Mereswissenschaftliche Berichte MARINE SCIENCE REPORTS

No. 20

Die bodennahe Trübezone der Mecklenburger Bucht unter besonderer Betrachtung der Stoffdynamik bei Schwermetallen

von

Andreas Harms

Institut für Ostseeforschung Warnemünde 1996 Die vorliegende Arbeit ist eine inhaltlich gekürzte Fassung einer Dissertation, die 1995 im Institut für Ostseeforschung Warnemünde angefertigt und von der Mathematisch-Naturwissenschaftlichen Fakultät zu Rostock angenommen wurde.

Das dieser Arbeit zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung, Wissenschaft und Technologie unter dem Förderkennzeichen 03F0065B gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Inhaltsverzeichnis

	Zusammenfassung	
	Summary	
1.	Aufgabenstellung	7
2.	Koordinaten und Lage der Stationen in der	
	Mecklenburger Bucht (MBB)	8
3	Poprohung	0
J. 2 1	Deproving	9
5.1 2.0	Probenarten und Beprobungskampagnen	9
3.2	Probennanme	10
4.	Die chemischen Parameter in der bodennahen Wasserschicht	12
4.1	Sauerstoff. Nährstoffe und DOC	
	Zusammenfassung der Ergebnisse aus Abschn. 4	19
4.2	Die Schwermetalle im Bodenwasser und im Schwebstoff	22
4.2.1	Das Bodenwasser	44
	Zusammenfassung aus Abschn. 4.2.1	30
4.2.2	Die Schwebstoffe	31
4.2.2.1	Das Verhältnis von Schwermetallen zur SPM-Menge	34
4.2.2.2	Extraktionsexperimente am partikulären Material	46
	Zusammenfassung aus Abschn. 4.2.2	54
5.	Untersuchungen an Sediment-Kernen des Untersuchungsgebietes	56
5.1	Die Korngrößenverteilungen	56
5.2	Die Gehalte an Kohlenstoff und Schwefel	62
5.3	Der Wassergehalt	65
5.4	Die Schwermetalle	66
5.4.1	Schwermetallgehalte und Extraktionsexperimente	66
5.4.2	Normierte Schwermetalltiefenprofile	78

5.4.2.1	Vergleich der Normierungsparameter	78
5.4.2.2	Li-normierte Schwermetalltiefenprofile	81
5.4.2.2.1	Anreicherungsfaktoren der Schwermetalle	87
5.4.3	Akkumulationsraten von Schwermetallen im Sediment	90
	Zusammenfassung der Ergebnisse aus Abschn. 5.	93
6.	Das Porenwasser	96
6.1	Der gelöste organische Kohlenstoff (DOC)	96
	Zusammenfassung der Ergebnisse aus Abschn. 6.1	98
6.2	Die Schwermetalle	99
7.	Stofflüsse von Schwermetallen an der Grenzfläche	
	Sediment / bodennahes Wasser	107
7.1	Betrachtungen zu den Stofflüssen für das gesamte Gebiet	
	der Mecklenburger Bucht	112
8.	Zusammenfassung	114
	Literatur	121

Anhang : Analysendaten

Danksagung

Die Mittel zur Bearbeitung dieser Problematik wurden durch das BMBF unter dem Förderkennzeichen 03F0065 B bereitgestellt, dem hiermit herzlich gedankt wird

Herrn Prof. Dr. Jan Harff danke ich sehr herzlich für die jederzeit gewährte Unterstützung und das entgegengebrachte Vertrauen.

Weiterhin möchte ich den Herren Prof. Dr. Andreas Dahmke, Dr. Th. Leipe, Dr. Th. Neumann, Dr. W. Lemke, Dr. G. Nausch und Herrn Dr. B. Schneider für die wichtigen Diskussionen und Hinweise danken.

Den Mitarbeiterinnen und Mitarbeitern der Sektionen Meereschemie und Marine Geologie, besonders Frau Chem. Ing. B. Sadkowiak, Frau A.-M. Welz, Herrn B. Wachs, Frau R. Rosenberg, Frau D. Benesch, Frau J. Christoffer sei herzlich gedankt.

Besonderer Dank gebührt Frau Chem. Ing. U. Hennings, Herrn Dipl.-Ing. N. Raue und Frau P. Schäning. Herrn Prof. Dr. L. Brügmann danke ich für wichtige Diskussionen.

Bedanken möchte ich mich weiterhin bei den Arbeitsgruppen der TU-Hamburg-Harburg (S. Thomsen, W. Priebsch und W. Kienz) und GEOMAR Kiel (Arbeitsgruppe Prof. Dr. G. Graf) für die konstruktive Zusammenarbeit.

Den Besatzungen und Kapitänen der FS "Alexander von Humboldt" (Rostock) und "Alkor" (Kiel) möchte ich hier ebenfalls für die Einsatzbereitschaft und Unterstützung danken.

Herrn Prof. Dr. H.-J. Brosin sei herzlich für das Engagement bei den Seereisen und die hilfreichen Diskussionen gedankt.

Weiterhin möchte ich mich bei den vielen Kollegen und Freunden bedanken, die mir während der gesamten Zeit am IOW durch Ihre Unterstützung und Zuarbeit sehr geholfen haben.

Besonders sei den Bibliothekarinnen B. Sievert und A. Schröder gedankt, die mich in Literaturfragen und Beschaffung sehr unterstützten.

Herrn Dr. habil M. Kersten danke ich für die Hilfe, Diskussionen und Anregungen sowie für die Durchsicht des Manuskriptes.

Ganz besonders möchte ich mich bei Herrn Prof. Dr. G. Schlungbaum bedanken, der die Betreuung dieser Arbeit übernahm und mir in der Endphase der Arbeit sehr hilfreich zur Seite stand.

Zusammenfassung

In der Zeit vom Februar 1993 bis zum April 1994 erfolgten an ausgewählten Stationen im Bereich der Mecklenburger Bucht Beprobungen und Untersuchungen zur Variation von Nährstoffen, gelöstem organischen Kohlenstoff (DOC) sowie von Schwermetallen im Bodenwasser, den Schwebstoffen, dem Porenwasser und den Sedimenten.

Während einer Stagnationsperiode im Sommer 1993, die bei nahezu allen Beprobungsstationen im bodennahen Bereich zur Ausbildung von Zuständen mit Sauerstoffverarmung führten, konnten Remobilisierungseffekte bei den Elementen Mn, Fe, Ni und Co sowie beim Phosphat und Silikat festgestellt werden. Diese Effekte lagen bei den Stationen der Lübecker Bucht geringer vor, als an den Stationen der zentralen Mecklenburger Bucht. Bei den Elementen Pb, Cu, Cd, Hg und Zn konnten auch jahreszeitliche Schwankungen festgestellt werden, die in ihrem Ausmaß jedoch die Deutlichkeit von Mn, Fe, Co und Ni nicht erreichten. Beim DOC in der bodennahen Wasserschicht konnte über den gesamten Beprobungszeitraum hinweg eine gleichmäßige Verteilung beobachtet werden.

Unterschiedliche meteorolgische Situationen und Strömungen führten im Untersuchungsgebiet zu unterschiedlich starken Resuspensionen des partikulären Materials (SPM). Der Einfluß der Sedimentes auf die Schwermetallgehalte in den gewonnenen Schwebstoffproben konnte festgestellt werden. Es wurde deutlich, daß bei den Elementen Fe, Al und Co eine Zunahme der Konzentration mit der Schwebstoffmenge erfolgte. Die Konzentrationen an Cu, Ni und Cd nehmen mit steigenden SPM-Mengen ab, was auf Verdünnungseffekte von biogenem Material durch resuspendierte mineralische Partikel zurückzuführen ist.

Extraktionsexperimente und ermittelte K_D-Werte zeigten bei den einzelnen Metallen eine breite Schwankung in der Mobilität im SPM und im Verhältnis SPM zur gelösten Phase.

Bei der Untersuchung des Porenwassers und der Sedimente konnten saisonal unterschiedlich ausgeprägte Redoxzonen und damit einhergehende Konzentrationsunterschiede bei den einzelnen Elementen festgestellte werden. Die Sedimente wiesen in ihrem Tiefenprofil eindeutig anthropogene Einflüsse auf, wie aus Li-Normierungen abzuschätzen war. Extraktionsexperimente ergaben bei den Elementen Zn, Cd, Pb und Cu zum Teil hohe Mobilisierbarkeiten bis in untersuchte Sedimenttiefen von 30 - 50 cm. Aus den Ergebnissen der Poren- und Bodenwassermessungen wurden Stofflüsse an der Grenzfläche Sediment bodennahes Waseer berechnet. So konnten z.B. für Mn während der Stagnationsperiode im September 1993 Werte von 3345 mg x m² x a⁻¹ ermittelt werden.

Summary

From February 1993 to April 1994 investigations were made in the Mecklenburg Bay to determine the varieties of; nutrients, dissolved organic carbon (DOC) and trace metals in bottom water, suspended particle (SPM), porewater and sediments.

During a stagnation period in summer 1993 with a nearly oxygen-free situation on the seabed a remobilization effect was detected for the elements Mn, Fe, Ni, Co as well as phosphates and silicates.

The values for the Lübeck Bay were less than for the central Mecklenburg Bay. Seasonal variations were also detected for the elements Pb, Cu, Cd, Hg and Zn althought their values did not reach the importance of Mn, Fe, Co and Ni. In the DOC values in the area of the seabed relatively constant levels were measured during the whole of the period of investigation.

Differing meteorological situations and current led to different resuspension levels of the SPM. The influence of the sediment on the levels of heavy metals was registered. The levels of concentration of Fe, Al and Co increased parallel with the levels of SPM, whereas the levels of concentrations of Cu, Ni, and Cd decreased accordingly, due to the diluting effect of biogenic material by resuspended mineral particles.

Extraction experiments and the K_D -coefficients showed that there is a wide range in values of the metals in SPM and the dissolved phase (bottom water).

During the investigation into porewater and sediment, seasonal differences were registered in levels of redoxzones and therefore also in the levels of concentration of the various metals.

In the depht profiles of the sediment, significant anthropogenic influences were found compared to the typical regional levels of Li.

Extraction experiments indicated hight mobility rates of the elements Zn, Cd, Pb, and Cu at the examinated depth of 30 - 50 cm.

Fluxes of trace metals and nutrients were calculated. For instance the flux of manganese across the sediment water interface showed rates of 3345 mg x m² x a⁻¹ during the stagnation period (summer 1993). In the winter period with hight oxygen levels flux rates of 1,62 mg manganese x m² x a⁻¹ were calculated.

1. Aufgabenstellung

Die Aufgabe dieser Arbeit lag in der Erfassung von Situationen und Veränderungen der Schwermetalle, Nährstoffe und gelöstem organischen Kohlenstoff (DOC) im Poren- und bodennahen Wasser, den Schwebstoffen und Sedimenten. Dazu sollten jahreszeitlich unterschiedliche meteorologische Situationen und ihre Auswirkungen auf die Stoffdynamik der Parameter an der Grenzfläche Sediment/bodennahes Wasser untersucht werden.

Aus einer umfassende Bestimmung von Schwermetallen der gelösten und der partikulären Phase, des Poren- und Bodenwassers sowie die Analytik an der Sedimentphase, wie auch die Messungen zu den Nährstoff- und DOC-Konzentrationen sollten die resultierenden Stofflüsse an der Grenzfläche Sediment / bodennahes Wasser berechnet werden.

Die Komplexizität der Wechselwirkungen im Bereich der bodennahen Trübezone (BTZ) und die damit verbundene Bedeutung der durchgeführten Untersuchungen wird aus Abb. 1 erkennbar.

Abb. 1 Komplexizität, Dynamik und Wechselwirkungen im Bereich der bodennahen Trübezone (BTZ)

2. Koordinaten und Lage der Stationen in der Mecklenburger Bucht (MBB)

Das Untersuchungsgebiet erstreckte sich auf zwei Schnitte in der Mecklenburger Bucht bzw. der stärker mit Problemstoffen belasteten Lübecker Bucht.

Dabei sollten auf jeweils 4 Probennahmestationen von den relativ gut belüfteten Randlagen der Bucht bis in zentrale Bereiche mit teilweise bereits anoxischen Verhältnissen im sedimentnahen Bereich der Wassersäule Beprobungen durchgeführt werden. Ausgangspunkt der Schnitte waren die Monitoring-Stationen 12 (Mecklenburger Bucht) und 23 (Lübecker Bucht) des Institutes für Ostseeforschung (IOW).

An diese fügten sich jeweils 3 weitere Stationen in Richtung Küste (s. Karte) an.

Karte 1 Stationskarte

1 ab. 1 Stationskoordinaten im Untersuchungsge
--

Station - Nr.	Koordinaten	Station - Nr.	Koordinaten
230	54° 3,50'N, 11° 3,30'E	120	54° 18,90'N, 11° 33,00'E
23a	54° 2,85'N, 11° 3,50'E	12a	54° 16,90'N, 11° 33,00'E
23b	54° 2,15'N, 11° 3,80'E	12b	54° 14,90'N, 11° 33,00'E
23c	54° 1,60'N, 11° 4,00'E	12c	54° 12,90'N, 11° 33,00'E

Beprobung 3.

.

Probenarten und Beprobungskampagnen .3.1

Die Beprobungskampagnen wurden im Zeitraum von Februar 1993 bis Mai 1994 mit den FS "Alexander v. Humboldt" und "Alkor" durchgeführt.

Im Einzelnen erfolgte eine gestaffelte Beprobung, teilweise unterschiedlicher Parameter entsprechend nachfolgender Aufstellung:

Tab. 2	Übersicht über die Beprobungen bei den Ausfahrten	

Station /	Ausfahrt	Ausfahrt	Ausfahrt	Ausfahrt	Ausfahrt	Ausfahrt
Beprobung	Febr.1993	Mai 1993	Sept. 1993	Nov. 1993	Febr. 1994	April 1994
Station 120						
Bodenwasser	02.02.	05.05.	30.08.		06.02.	20.04.
Wassersäule				23.11.	04.02.	20.04.
Sediment			30.08.	-		
Porenwasser		· · · · · · · · · · · · · · · · · · ·	30.08.		04.02.	20.04.
Station 12a						
Bodenwasser	02.02.	06.05.	31.08.			21.04.
Wassersäule				23.11.	05.02.	21.04.
Sediment						
Porenwasser						21.04.
Station 12b				and a second		
Bodenwasser	04.02.		31.08.			21.04.
Wassersäule		· · ·			05.02.	21.04.
Sediment			31.08.			
Porenwasser			31.08.			21.04.
Station 12c						
Bodenwasser	04.02.	06.05.	31.08.		06.02.	21.04.
Wassersäule					05.02.	21.04.
Sediment						
Porenwasser						21.04.

Station 230						
Bodenwasser	03.02.	04.05.	02.09.	22.11.	03.02.	22.04.
Wassersäule					02.02.	22.04.
Sediment			02.09.			
Porenwasser			02.09.		03.02.	22.04.
Station 23a						
Bodenwasser	02.02.	04.05.	01.09.	22.11.	03.02.	22.04.
Wassersäule					02.02.	22.04.
Sediment						
Porenwasser						22.04.
Station 23b						
Bodenwasser	03.02.		01.09.			22.04.
Wassersäule					04.02.	22.04.
Sediment			01.09.		· · · · ·	
Porenwasser		- · · · · · · · · · · · · · · · · · · ·	01.09.			22.04.
Station 23c						los 12
Bodenwasser	03.02.	05.05.	01.09.	22.11.		
Wassersäule				· · ·	04.02.	22.04.
Sediment					<u> </u>	
Porenwasser						

3.2 Probennahme

Die Durchführung der Probennahme erfolgte unter Verwendung spezieller meerestechnischer Probennahmegeräte. Je nach Probenart kamen dabei zum Einsatz:

Bodenwasser:

Bodenwasserschöpfer nach THOMSEN et al. (1994).

Dieses Gerät wurde eigens für die Beprobung der bodennahen Trübezone entwickelt und enthält neben einer umfangreichen Sensorik 4 Behälter zur Gewinnung von 4 Wasserproben aus den Höhen von 5 - 40 cm über dem Sediment.

Abb. 2 Bodenwasserschöpfer nach THOMSEN et al. (1994)

Weiterhin kamen zum Einsatz:

Wassersäule:

Kranzwasserschöpfer bzw. Go-Flow-Schöpfer

Sedimentkerne:

Multicorer

4. Die chemischen Parameter in der bodennahen Wasserschicht

4.1 Sauerstoff, Nährstoffe und DOC

Die Konzentrationsverhältnisse im Bereich der bodennahen Wasserschicht wurden an 8 Stationen in der Mecklenburger und Lübecker Bucht untersucht. Dabei konnten über den Untersuchungszeitraum sehr unterschiedliche Gehalte an Sauerstoff, Nitrat/-it, Ammonium, Phosphat, Silikat und DOC beobachtet werden.

Die Sauerstoffkonzentrationen im Untersuchungsgebiet weisen ein deutliches jahreszeitliches Signal auf, das auch aus der Literatur bekannt ist (MATTHÄUS, 1975; NEHRING UND FRANCKE, 1981; NIEDERMEYER UND LANGE, 1989). Dabei bewirken horizontale und vertikale Austauschprozesse in der Mecklenburger Bucht eine Sauerstoffversorgung des Tiefenwassers. Effekte von etwaigen Salzwassereinbrüchen sind somit in diesem Gebiet in Bezug auf den Sauerstoff nicht deutlich festzustellen (NEHRING et al., 1994). Im Februar 1993 wurden im gesamten Stationsbereich Konzentrationen zwischen 300 - 350 µmol/l festgestellt. Im Mai lagen die gemessenen Gehalte zwischen 150 - 200 µmol/l. Eine Stagnationsperiode im September ließ die Konzentrationen an Sauerstoff bei der überwiegenden Zahl der Stationen zwischen 0 -50 µmol/l absinken. Dabei war bei Station 23a kein Sauerstoff nachzuweisen. Betrachtet man den horizontalen Verlauf der Stationen, so kann festgestellt werden, daß mit zunehmender Abnahme der Wassertiefe, hin zu sandigen Sedimenten in Küstennähe auch im September noch Sauerstoff vorhanden war. Dies betrifft besonders die Station 23c (Sandstation), bei der Konzentrationen zwischen 90 -130 µmol/l gemessen wurden. Bei Station 12c lagen die nachweisbaren Gehalte zwischen 16 - 36 µmol/l. Als wesentlicher Grund für dieses Konzentrationsbild ist die Tatsache zu nennen, daß bei den überwiegenden Anzahl von Stationen Schlick vorherrscht, wohingegen bei 23c Sand festgestellt wurde. Die mit dem Abbau von organischem Kohlenstoff einhergehenden Sauerstoffzehrungsvorgänge sind eine wesentliche Ursache hierfür. Es zeigt sich, daß im Bereich der Kontaktzone Sediment / bodennahes Wasser ein Schlicksediment durch Zehrungs- und Diagenesevorgänge eine andere Grundlage für weitere Umwandlungsvorgänge darstellt, als ein Sandsediment. Dies beginnt bei unterschiedlichen Sauerstoffgehalten infolge unterschiedlich großer Zehrung und setzt sich bei der Menge der für eine Freisetzung zur Vefügung stehenden Komponenten fort.

Im Verlauf der Beprobungskampagnen wurde ebenfalls der gelöste organische Kohlenstoff (DOC) gemessen. Bei den einzelnen Stationen wurden dabei nahezu gleiche Konzentrationen festgestellt. Station 120 wies im September 1993 einen Gehalt von 2 - 3 mg/l auf. Auch im Februar 1994 wurden Konzentrationen im gleich großen Bereich gefunden. Gleiches wurde an den anderen Stationen gemessen.

Einen wesentlich anderen Konzentrationsverlauf und erheblich höhere Gehalte an DOC wurden im November 1993 festgestellt. Die gemessenen Konzentrationen lagen hier etwa 2-3 fach höher, als bei den anderen Beprobungen. Es muß jedoch gesagt werden, daß eine Saisonalität im Konzentrationsverlauf des DOC nicht deutlich beobachtet werden konnte. Die höheren Konzentrationen sind mit hoher Wahrscheinlichkeit auf einen systematischen Fehler bei der Probenbearbeitung an Bord eingetreten, denn Aufwirbelungskräfte durch stürmische Wetterlagen in Flachwassergebieten sind zwar bekannt (LANGE UND NIEDERMEYER, 1985; BRÜGMANN, 1986; RITZRAU UND GRAF, 1992), damit einhergehende Freisetzungen von DOC aus dem Porenwasser in die Wassersäule können als Ursache für diese Situation nicht angenommen werden. Das Potential an DOC im Porenwasser reicht dazu nicht aus.

Eine Beprobung des bodennahen Wassers konnte im Untersuchungszeitraum 1993/94 bei nahezu allen Stationen durchgeführt werden. Gleichfalls kann kein Hinweis dafür gefunden werden, ob bei hohen Sauerstoffgehalten, die einen schnelleren Abbau von partikulärem Kohlenstoff ermöglichen sollten, auch eine Erhöhung der DOC Konzentration in den beprobten bodennahen Wasserschichten bis 40 cm über dem Sediment eintrat. Die festgestellten Konzentrationsverläufe werden im Gesamtüberblick in den nachfolgenden Grafiken dargestellt. Dabei entsprechen die einzelnen Darstellungen den Beprobungen Februar 1993, Mai 1993, September 1993, November 1993 und Februar 1994.

Abb. 3 Sauerstoff- und DOC-Konzentrationen im Untersuchungsgebiet

Wie bereits beim Sauerstoff festgestellt, wiesen die Nährstoffe Ammonium, Nitrat/-it, Phosphat sowie das Silikat im Untersuchungsgebiet saisonale Unterschiede an der Grenzfläche Sediment/ bodennahes Wasser auf.

Die Gehalte an Nitrat/-it nahmen vom Februar zum September 1993 deutlich ab. Als Ursachen dafür können Lateraltransportvorgänge und vertikale Transportvorgänge der Nährstoffe in höhere Wasserschichten mit Abnahme der Temperaturschichtung und mögliche Assimilationsvorgänge durch das Phytoplankton angenommen werden. Mit Zunahme der Sauerstoffgehalte im November 1993 und Februar 1994 stiegen diese wieder an. Als eine mögliche Ursache dafür können Nitrifikationsvorgänge angenommen werden. Andererseits sind advektive Prozesse, verbunden mit einem lateralen Transport von Wassermassen aus anderen Bereichen der Ostsee (Kattegat) vorhanden. Dieser Fakt ist dann bedeutsam, wenn in einer Stagnationsperiode Wasser aus dem Kattegat in die Mecklenburger Bucht strömt, welches durch Zehrungsvorgänge nur geringe Mengen an Sauerstoff enthält. Dieser Sauerstoff wird dann durch den Abbau organischer Substanz in der Mecklenburger Bucht weiter reduziert. Ein Anzeichen für Sauerstoffmangelsituationen und einer damit einhergehenden unvollständigen Mineralisation organischen Materials sind hohe Ammoniumkonzentrationen. Dies findet man z.B. wenn Nitrifikationsvorgänge durch Sauerstoffmangel langsamer ablaufen, als die Ammonifikation. Im Bild der Meßergebnisse spiegelte sich dieser Trend jedoch nicht wider, was auf den großen Überschuß an organischen N-Verbindungen zurückzuführen ist, bei deren Abbau NH4⁺ gebildet wird.

Abb. 4 Nitrat/-it und Ammoniumkonzentrationen im Untersuchungsgebiet

Bei Phosphat und Silikat konnten im saisonalen Verlauf der Beprobungen deutliche Konzentrationsunterschiede festgestellt werden. So nahm die Konzentration des Phosphates mit abnehmendem Sauerstoffgehalt zum September zu. Ein wesentlicher Grund dafür ist in sich verändernden Redoxverhältnissen im sedimentnahen Raum zu sehen. Bei sub- bzw. anoxischen Verhältnissen treten Remobilisierungseffekte auf, bei denen Phosphat aus dem

Sediment herausgelöst wird (FISHER et al. ,1982; JENSEN et al., 1992; SUNDBY et al., 1992; JENSEN et al., 1994, INGALL UND JAHNKE, 1994). Gleichzeitig sind ebenfalls laterale und advektive Prozesse im Wasserkörper verantwortlich für das Auftreten von Konzentrationsunterschieden. Innerhalb der Stationen zeigten sich trotz eines ähnlichen Konzentrationsverlaufes Unterschiede. So wurden gerade im September 1993 beim Horizontalschnitt der Stationen 120,12a, 12b und 12c teilweise 2-fach und höhere Gehalte gefunden als beim Schnitt an Station 23. Dieser Umstand läßt die Vermutung zu, daß bei einer Remobilisierung aus dem Sediment unterschiedliche Gehalte an Phosphat vorliegen. Weiterhin kann die nahezu gleichgebliebene Konzentration an Phosphat bei Station 23c im Vergleich zu Mai 1993 und Februar 1993 als Beleg für eine Sauerstoffabhängigkeit der Phosphatkonzentration gewertet werden, da diese Station im September 1993 noch über Sauerstoff verfügte.

Abb. 5 Phosphat- und Silikatkonzentrationen im Untersuchungsgebiet

Die Gehalte an Silikat in der bodennahen Wasserschicht wiesen eine leichte Abnahme in den Konzentrationen von Februar 1993 zu Mai 1993 auf. In der sauerstoffärmeren Phase des September 1993 nahmen die Gehalte an Silikat teilweise drastisch zu.

Besonders war dieser Effekt bei Horizontalschnitt 12 zu beobachten. Dies kann ein Hinweis dafür sein, daß ein höherer Gehalt an Silikat bei Schnitt 12 zu Verfügung stand. Andererseits kann eine Ursache auch in Remobilisierungseffekten aus dem Sediment zu suchen sein. Bei Station 23c (9/93) konnten im Vergleich zu den anderen Stationen nahezu gleichgebliebene Gehalte festgestellt werden.

Zusammenfassung der Ergebnisse aus Abschn. 4.

Die Ergebnisse der saisonalen Beprobung der 8 Stationen in der Mecklenburger Bucht zeigten deutliche Unterschiede, sowohl saisonal, als auch im Vergleich der Stationen und Transekte.

Beim **Sauerstoff** wurden im Februar 1993 Werte zwischen 300 - 350 μ mol/l gemessen. Im Mai 1993 lagen die Gehalte zwischen 150 - 200 μ mol/l. Eine Stagnationsperiode im September 1993 führte zum Rückgang der Sauerstoffkonzentrationen im bodennahen Wasserkörper. Es wurden Werte zwischen 0 - 50 μ mol/l erreicht. Im Bereich der Lübecker Bucht konnte an Station 23a (s. Karte 1) kein Sauerstoff festgestellt werden.

Betrachtet man die Stationstransekte, so konnte festgestellt werden, daß mit Abnahme der Wassertiefe in Richtung der küstennächsten Station 23c, die Sandsediment aufwies, auch während der Stagnationsperiode Sauerstoff im Bereich von 90 - 130 μ mol/l aufwies. Bei der Schlickstation 12c hingegen konnten lediglich Gehalte zwischen 16 - 36 μ mol/l gemessen werden.

Beim gelösten organischen Kohlenstoff wurden über die gesamte Beprobungsperiode Gehalte zwischen 2 - 3 mg/l gemessen. Während der Beprobung im November 1993 lagen die Werte zwischen 5 - 10 mg/l. Bei diesen Werten muß jedoch ein Probenbearbeitungsfehler angenommen werden. Obwohl während der Beprobung große sturmbedingte Turbulenzen eine deutliche Remobilisierung von Sediment (Porenwasserfreisetzung) zur Folge hatten, ist der Gehalt an DOC im Porenwasser nicht ausreichend für eine derartig drastische Erhöhung der Konzentrationen im bodennahen Wasserkörper.

Eine deutliche saisonale Tendenz zeigten das Nitrat/-it. Da alle Stationen ein nahezu gleiches Bild zeigten, wird hier die Station 120 beispielgebend dargestellt. Im Februar 1993 wurden Werte zwischen 11 - 13 μ mol/l gemessen. Eine Konzentrationsabnahme (3 - 5 μ mol/l) konnte im Mai 1993 gemessen werden. Während der sauerstoffarmen (-freien)

Periode im September 1993 lagen die Konzentrationen von Nitrat/-it zwischen $0,5 - 0,9 \mu$ mol/l. Nach Beendigung der Stagnationsperiode stiegen die Werte wieder an [(Station 230) zwischen 6 - 8 μ mol/l] und erreichten im Februar 1994 bei Station 120 Werte zwischen 30 - 47 μ mol/l. Der Mai 1994 zeigte wiederum eine saisonal bedingte Abnahme. Die Gehalte erreichten die Größenordnung vom Mai 1993 mit Werten um 3 μ mol/l.

Beim Ammonium konnten ebenfalls saisonale Effekte festgestellt werden, obwohl innerhalb der Stationen (120 und 12a im Vergleich zu Transekt 23) Unterschiede auftraten. Als Beispiel wird die Station 230 herangezogen, da die Saisonalität besonders deutlich erkennbar ist. Im Februar 1993 lagen die Gehalte an Ammonium zwischen 1,4 - 1,9 µmol/l. Zum Mai 1993 erhöhten sich die Gehalte auf Werte zwischen 2 - 4 µmol/l. Diese Erscheinung läßt einen Einfluß der Planktonblüte im Februar erkennen. Weiterhin kann als Ursache eine verlangsamte Nitrifikation infolge Sauerstoffmangels genannt werden, während gleichzeitig die Ammonifikation zunahm. Dies wird deutlicher in den Gehalten während der Stagnationsperiode im September 1993. Die Ammonium-Konzentrationen sanken dabei auf Werte zwischen 0,9 - 1 µmol/l. Mit zunehmender Sauerstoffversorgung im November 1993 erreichte das Ammonium wieder Gehalte zwischen 3,5 - 3,7 µmol/l. Die Konzentrationen im Februar 1994 zeigten das Bild aus dem Februar 1993 mit Konzentrationen zwischen 1 - 2 µmol/l.

Interessante saisonale Effekte zeigte das **Phosphat**. Im Jahresgang konnte besonders beim Transekt 12 ein deutlicher Trend beobachtet werden.

Als Beispiel wird die Station 12a beschrieben. Wohingegen während der relativen Sauerstoffanreicherung im Februar 1993 Werte zwischen $0,6 - 0,7 \mu mol/l$ gemessen wurden, und auch noch im Mai 1993 Konzentrationen zwischen $0,4 - 0,5 \mu mol/l$ auftraten, konnte im September eine Konzentrationsanstieg um den Faktor 2 - 3 auf Werte zwischen $0,8 - 1,3 \mu mol/l$ registriert werden. Mit Zunahme der Sauerstoffversorgung zum November 1993 und Februar 1994 sanken die Phosphatgehalte im bodennahen Wasser wieder auf Werte zwischen $0,5 - 0,6 \mu mol/l$ ab. Aus diesen Ergebnissen wird ein direkter Einfluß des Sedimentes auf die Konzentrationen im bodennahen Wasserkörper deutlich. Infolge von Remobilisierungseffekten aus dem Sediment steigen die Konzentrationen an Phosphat in einer Stagnationsperiode an. Sehr ähnlich verhielten sich die Konzentrationen des **Silikates** im Jahresgang der Konzentrationen. Hier konnte, wie bei Phosphat eine deutliche Tendenz zu höheren Gehalten während der Stagantionsperiode festgestellt werden. Bei Station 12a konnten im Februar 1993 Werte zwischen 24 - 25 μ mol/l gemessen werden. Im Mai 1993 lagen die Konzentrationen an Silikat zwischen 14 - 24 μ mol/l. Die Stagnationsperiode im September 1993 führte zu einem Anstieg der Silikatgehalte auf Werte zwischen 48 - 62 μ mol/l. Mit Zunahme der Sauerstoffsättigung im November 1993 und Februar 1994 erreichten die Silikatwerte wieder die Größenordnung vom Februar 1993.

4.2. Schwermetalle im Bodenwasser und im Schwebstoff

4.2.1 Das Bodenwasser

Die Konzentration der Schwermetalle Cu, Pb, Cd und Pb sowie die Elemente Mn und Fe wurden im Bodenwasser des Untersuchungsgebietes zu verschiedenen Zeiten im Jahr gemessen.

Abb. 6 Schwermetallkonzentrationen der gelösten Phase von Station 120 und 12a

Nach den Metallkonzentrationen der gelösten Phase des Stationsschnittes 12 wurden gleichfalls die Gehalte des Stationstransektes 23 der Lübecker Bucht gemessen. Die dabei festgestellten Konzentrationen sind in der nachfolgenden Darstellung zusammengefaßt.

Abb. 8 Schwermetallkonzentrationen der gelösten Phase von Station 230 und 23a

Die Ergebnisse aus dem Beprobungszeitraum belegen saisonal unterschiedliche Konzentrationen an Schwermetallen in der bodennahen Wassersäule. Dabei zeigte sich, daß während der Beprobungen in Zeitabschnitten mit höheren Sauerstoffgehalten die Konzentrationen als relativ konstant angesehen werden können.

Deutliche Gradienten im Bereich von 5 - 40 cm über dem Sediment konnten nicht festgestellt werden. Obwohl bei einigen Beprobungen deutlich höhere Konzentrationen in der Höhe von 5 cm über dem Sediment gemessen wurden, muß dies als Effekt der Probennahme angenommen werden.

Abb. 9 Schwermetallkonzentrationen der gelösten Phase von Station 23b und 23c

SCHULTZ-TOKOS et al. (1993) führten im Bereich der Kieler- und Mecklenburger Bucht Schwermetallbestimmungen an Seewasser aus der bodennahen Schicht von 2 m über dem Sediment durch (betrachtet werden davon hier die Stationen 26 und 28).

Beispielgebend für das Untersuchungsgebiet werden die Stationen 120 und 230 mit den Daten o.g. Arbeit verglichen. Dabei stehen besonders saisonale Effekte der Sauerstoffversorgung im Mittelpunkt der Betrachtung.

Tab. 3Vergleich von Schwermetallkonzentrationen der gelösten Phase in
Abhängigkeit von Saisonalität und Sauerstoffgehalt

Sta- tion	Monat	O2 µmol/1	Sal. PSU	Co nmol /kg	Pb nmol /kg	Cd nmol /kg	Cu nmol /kg	Ni nmol /kg	Fe nmol /kg	Mn nmol /kg
120	2/93	333,2	22,1	0,4	0,3	0,2	31,3	6,1	34,6	29682.29 <u>672.22</u> 2.230
26	11/90	227,0	17,06	0,307	0,106	0,128	7,17	12,11	12,1	63,0
·12o	9/93	5,9	24,1	3,3	0,3	0,4	87,5	21,6	400,9	4100,1
26	7/92	155,3	23,40	0,282	0,186	0,148	8,36	13,13	103,01	144,0
26	8/90	34,1	14,10	0,71	0,019	0,216	10,15	13,00	105	348
230	2/93	339,9	22,5	0,7	1,7	0,316	332,8	8,9	485,2	-
28	11/90	271,2	17,6	1,0	0,1	0,1	6,9	13,3	154,2	492,3

Fortsetzung von Tab. 3

230	9/93	24,5	19,8	3,6	0,3	0,3	9,6	12,0	-	494,5
28	7/92	91,6	19,34	0,357	0,080	0,167	8,65	13,48	84,87	431,4
28	8/90	0,9	22,92	6,64	0,035	0,254	7,21	13,63	4367	4087

Obwohl die Stationen unterschiedlich waren, zeigte sich, daß die Größenordnungen der Metallkonzentrationen gleich sind. Betrachtet man Co näher, wird deutlich, daß in Abschnitten mit guter Sauerstoffversorgung bis in den bodennahen Bereich die Konzentrationen < 1 nmol/kg liegen. Bei Abnahme der Sauerstoffkonzentration in der sommerlichen Stagnationsperiode steigen die Konzentrationen deutlich an. Es wurden Gehalte zwischen 3,3 nmol/kg und 3,6 nmol/kg im bodennahen Bereich und Werte zwischen 0,4 - 6,6 nmol/kg in der Wasserschicht von 2 m über dem Sediment gefunden.

Beim Element Pb zeigte sich, daß die Konzentrationen mit abnehmendem Sauerstoffgehalt saisonal geringer werden. Dies trifft sowohl für den bodennahen Bereich als auch für die Wasserschicht bei 2 m über dem Sediment zu. Die deutliche Änderung der Pb-Konzentration bei Station 230 wird bei Station 120 nicht gefunden. Hier lagen die Konzentrationen im Gegenteil leicht erhöht vor. Für Cd konnten übereinstimmend bei den Stationen des Untersuchungsgebietes und den Messungen von SCHULZ-TOKOS et al., (1993) während Perioden mit geringeren Sauerstoffkonzentrationen erhöhte Werte festgestellt werden.

Im bodennahen Bereich des Untersuchungsgebietes konnten beim Element Cu wesentlich höhere Gehalte im Bereich zwischen 5 - 40 cm festgestellt werden. Obwohl die Konzentrationen insgesamt entgegen der Sauerstoffkonzentration zunahmen, ist die direkte Sedimentnähe von großer Bedeutung. Das Element Ni zeigte in der Wasserschicht von 2m eine nahezu konstante Konzentration, die unabhängig von der Sauerstoffkonzentration war. In der bodennahen Trübezone hingegen wurden während der Stagnationsperiode im September 1993 deutlich höhere Gehalte gefunden.

Die deutlichste Abhängigkeit von der Sauerstoffkonzentration wurde bei den Elementen Fe und Mn festgestellt. So fanden SCHULZ-TOKOS et al., (1993) Fe-Konzentrationen, die in der Stagnationsperiode 8/90 bei Station 28 (siehe Stationsplan in SCHULZ TOKOS et al., (1993) das 28-fache der Konzentration bei sauerstoffreichen Verhältnissen ausmachten. Bei Station 26 wurden 8-fach höhere Konzentrationen gemessen. In der bodennahen Trübezone wurden bei Station 120 12-fach höhere Konzentrationen an Fe gemessen. Das Mn war im gleichen Zeitabschnitt bei Station SCHULZ-TOKOS et al., (1993) um das 5-fache konzentrierter als im übrigen Zeitverlauf. Weiterhin wurde im Vergleich der Konzentrationen zwischen Station 120 und 230 deutlich, daß zur gleichen Beprobungszeit an Station 120 8-fach höhere Mn-Konzentrationen gemessen wurden.

Unterschiede zeigten sich weiterhin entlang der Stationsschnitte. Die zentralen Stationen 120 und 12a wiesen dabei Gehalte an gelöstem Mn von 4550 - 9100 nmol/kg auf. Bei den Stationen 12b konnten nur noch bei 5 cm über dem Sediment Gehalte von 4550 nmol/kg festgestellt werden, die im höheren Bereich abnahmen. Bei der küstennächsten Station 12c, die im Beobachtungszeitraum die höchsten Sauerstoffgehalte aufwies, konnten Mn-Gehalte um 1820 nmol/kg festgestellt werden.

Beim Element Fe konnten dem Mn vergleichbare Verläufe festgestellt werden. So lagen die Konzentrationen bei den Stationen 120, 12a und 12b im September zwischen 447 - 895 nmol/kg. Bei Station 12c konnten Gehalte um 180 nmol/kg gemessen werden.

Mit den Elementen Mn und Fe wurden in der Stagnationsperiode des September 1993 auch erhöhte Konzentrationen an Co, aber auch von Ni festgestellt. Dies ist auf die Reduktion und Auflösung von Fe-, Mn- und Co-Hydroxiden zurückzuführen (LAPP, 1993). SUNDBY et al. (1986) berichten von Ergebnissen einiger Glockenexperimente an Sedimenten von Gullmarsfjorden (Schweden). Dort wurden in Sauerstoffverarmungszuständen im sediment-nahen Bereich beträchtliche Remobilisierungseffekte bei Fe, Mn und Co sowie von Phosphat festgestellt.

Die erhöhten Konzentrationen von Ni sind mit diesem Redoxverhalten nicht zu erklären, da Ni im anoxischen Bereich gelöst wird (LAPP UND BALZER, 1993).

Im Vergleich zum 12-er Stationsschnitt konnten in der Lübecker Bucht weit geringere Konzentrationen an Mn und Fe gemessen werden. Die Station 230 wies die höchste Mn-Konzentration von 1820 nmol/kg in der Höhe von 5 cm über dem Sediment auf. In den Schichten 10, 20, 40 cm lagen die Gehalte um 90 nmol/kg.

Bei Station 23a konnten Gehalte an Mn gemessen werden, die im Bereich von 455 - 2275 nmol/kg lagen.

Bei Station 23b lagen die Mn-Konzentrationen im Bereich um 360 nmol/kg. Die Station 23c als küstennächste Station mit den am höchsten liegenden Sauerstoffgehalten im Bodenwasser (Schlicksand) wies Gehalte an Mn um 20 nmol/kg auf.

Die Fe-Konzentrationen im Bodenwasser der 23-er Stationen konnten teilweise nicht mit der analytischen Genauigkeit bestimmt werden. Deshalb liegen für einzelne Untersuchungszeiträume keine auswertbaren Daten vor.

Bei den Elementen Co und Ni zeigte sich der gleiche Trend wie bei den Stationen des 12-er Stationsschnittes. Bei den Stationen 230 und 23a sowie bei Station 23b konnten bei der September - Beprobung ansteigende Ni und Co Gehalte gefunden werden. Bei Station 23c blieben die Werte dagegen nahezu konstant.

Die Elemente Fe und Mn eignen sich als Leitelemente für redoxchemische Veränderungen in der Wassersäule. Es wurde deutlich, daß eine Remobilisierung von Fe und Mn aus dem Sediment während Stagnationsperioden erfolgte. Dabei waren die Konzentrationseffekte im zentralen Bereich der MBB (Transekt 12) am größten. Mit zunehmender Küstennähe und damit verbundenen Änderungen des Sedimenttyps in Richtung schlickiger Sand bzw. Sand sanken die Konzentrationen an Fe und Mn deutlich ab. Dies kann einerseits mit höheren Sauerstoffgehalten und damit verbundener Oxidation und Ausfällung von Fe und Mn sowie mit einem geringeren Pool an Mn und Fe im Sediment erklärt werden.

Mit Beendigung der Stagnationsperiode und durch Sturmlagen im November 1993 hervorgerufene Sättigung des Bodenwassers mit Sauerstoff gingen die Konzentrationen an Fe und Mn sowie Co, aber auch Ni deutlich zurück. Als Grund dafür können Kopräzipitationen angenommen werden. Da auch SCHULZ-TOKOS et al., (1993) ähnliche Ergebnisse, wenn auch aus der Wasserschicht von 2 m über dem Sediment fanden, ist eine Regelmäßigkeit in diesen Effekten im Bereich der Mecklenburger Bucht zu erkennen.

Zusammenfassung aus Abschnitt 4.2.1

Bei den gelösten Schwermetallen im Bodenwasser zeigten sich besonders bei den Elementen Fe, Mn, Co und Ni deutlich saisonale, d.h. redoxbestimmte Effekte. Dabei wurde deutlich, daß diese Elemente im Jahresgang vom Februar 1993 bis zur Stagnationsperiode im September 1993 eine deutliche Erhöhung der Konzentrationen erkennen ließen. So stiegen bei Station 120 die Fe-Konzentrationen von 1,5 - 2,3 μ g/kg im Februar 1993 auf 21 - 26 μ g/kg im September 1993. Beim Mangan wurden im September 1993 Gehalte von 218 - 232 μ g/kg gemessen. In der sauerstoffreichen Periode (Februar 1994) hingegen nur noch ca. 2 μ g/kg. Das bedeutet beim Mangan eine Steigerung um den Faktor 100 und beim Fe eine Steigerung um den Faktor 10. Innerhalb des Transektes 12 konnte dabei weiterhin eine Abnahme der Fe- und Mn- Konzentrationen mit zunehmender Küstennähe festgestellt werden. Während Station 120 im September 1993 Fe-Gehalte von 21 - 26 μ g/kg aufwies, konnten bei der küstennächsten Station dieses Transektes (12c) lediglich Gehalte von 6 - 9 μ g/kg gefunden werden. Beim Mn wies Station 12c Gehalte zwischen 60 - 75 μ g/kg auf. Im Vergleich der Transekte 12 und 23 zeigte sich weiterhin, daß die deutlichen Gradienten in der Saisonalität besonders im Bereich der zentralen Mecklenburger Bucht auftreten, da der Transekt 23 in der Lübecker Bucht weit geringere Konzentrationsunterschiede zeigte.

Das Co und das Ni folgten in ihrem Konzentrationsverhalten deutlich dem der Elemente Fe und Mn. So konnten auch hier während der Stagnationsperiode im September 1993 die höchsten Konzentrationen gemessen werden. Im Transektvergleich zeigte das Element Co bei 230 und 23a (Transekt 23) die steilsten Gradienten. Bei Mn und Fe liegen jedoch nur unvollständige Datensätze vor, die eine Aussage nicht möglich machen. Beim Transekt 12 konnten bei den Stationen 120, 12a und 12b deutliche Anstiege verzeichnet werden. In Küstennähe (12c) konnte lediglich beim Co ein deutlicher Anstieg verzeichnet werden.

Diese Ergebnisse legen nahe, daß die Bedeutung der zentralen Mecklenburger Bucht durch das z.T. hohe Freisetzungspotential z.B. für die Bildung von Fe/Mn-Akkumulaten von Bedeutung ist, der Bereich der Lübecker Bucht möglicherweise nicht.

4.2.2 Die Schwebstoffe

Schwebstoffe (SPM) in der Wassersäule sind von großer Bedeutung für den Stoffkreislauf in Flachwassergebieten, wobei der Einfluß äußerer Bedingungen, wie z.B. Stürme, eine wichtige Rolle spielt. Die Flachwasserbereiche des Untersuchungsgebietes weisen Tiefen von 15 - 25 m auf. Daraus läßt sich bereits erkennen, daß mit Auswirkungen auf den Partikeltransport durch Resuspension zu rechnen ist.

Im Untersuchungsgebiet wurden während der Beprobungen sehr unterschiedliche SPM-Gehalte im Bodenwasser gemessen. Dabei zeigte sich, daß in unmittelbarer Sedimentnähe die höchsten Partikelkonzentrationen auftraten, siehe Abb. 10.

Obwohl zu einer Starkwindperiode im November 1993 aus technischen Gründen nicht von allen Stationen Proben gewonnen werden konnten, ist erkennbar, daß während dieser Zeit höhere Partikelkonzentrationen im bodennahen Wasserkörper auftraten. Dies wird besonders im Vergleich der 23-er Stationen zum September 1993 deutlich. Wie sich aus den SPM-Profilen zeigt, sind die Gehalte an Schwebstoffen in der Wasserphase sehr unterschiedlich. Dies ist als Folge der Wettereinflüsse und der Strömung im bodennahen Bereich und einer daraus resultierenden Sedimentremobilisierung zu sehen.

Abb. 10 Partikelkonzentrationen im Bodenwasser des Untersuchungsgebietes

Über die Partikelverteilung der Ostsee liegen umfangreiche Ergebnisse vor (JONASZ, 1983). Bei der Interpretation der gemessenen Gehalte sind die Methoden der Filtration und die verwendeten Filtermaterialien von besonderer Bedeutung (BRÜGMANN, 1986).

Autor	Methode/Material	gemessener Gehalt (mg/l)
Pustelnikov (1977)	Membranfilter	Mittelwert: 3 mg/l
	> 0,5 mm	Breite: 0,2 - 12,4 mg/l
BOSTRÖM ET AL. (1981)	Milipore-Filter	Mittelwert: 1 mg/l
BOSTRÖM ET AL. (1983)	0,45 µm	Mittelwert: 4 mg/l
	Sartorius SM 16511	Mittelwert:
BRÜGMANN (1986)	0,40 µm	0,94 +/- 0,78 mg/l
		Breite: 0,02 - 0,92 mg/l

Tab. 4 SPINI-Genaite der Ustse	Tab. 4	SPM-Gehalte de	er Ostsee
--------------------------------	--------	----------------	-----------

Die in Tab. 4 dargestellten Mittelwerte liegen in guter Übereinstimmung mit den im Untersuchungsgebiet gemessenen SPM-Gehalten. Da in dieser Arbeit der bodennahe Bereich der Wassersäule beprobt wurde, ist durch Partikelresuspensionen durch hohe Bodenströmungen (siehe Tab. 11 -12) eine zum Teil abweichende SPM-Menge nachvollziehbar. Je nach Beprobungszeitpunkt wirkten unterschiedliche meteorologische Bedingungen auf das Untersuchungsgebiet. So wurden im Februar 1993, November 1993 und Februar 1994 Stürme und ihre Auswirkungen erfaßt. RITZRAU UND GRAF (1992) stellten fest, daß Sturmeinflüsse eine direkte Auswirkung auf die Remobilisierung von Schwebstoffen in der bodennnahen Trübezone (BTZ) haben. Dabei wurden Auswirkungen bis in Tiefen von über 17 m nachgewiesen.

In Sturmlagen wurden in der Kieler Bucht eine gleichmäßige SPM-Verteilung über die gesamte Wassersäule festgestellt. In Phasen mit ruhiger Wetterlage konnten mit der Tiefe zunehmende SPM-Konzentrationen festgestellt werden. Auch diese Angaben stehen im Einklang mit den im Untersuchungsgebiet festgestellten Ergebnissen.

Um Informationen über die Herkunft und die Bedeutung dieser Partikel für Wechselwirkungen mit der gelösten Wasserphase zu erhalten, wurden Vergleiche zwischen SPM-Gehalten und Schwermetallkonzentrationen durchgeführt.

4.2.2.1 Das Verhältnis von Schwermetallen zur SPM-Menge

Im Untersuchungsgebiet der Mecklenburger Bucht wurden im Schwebstoff die Elemente Fe, Al, Co, Cu, Ni, Cd, Mn und Pb untersucht. Anhand der Betrachtung der terrigenen Elemente Al und Fe lassen sich dabei Resuspensionseffekte gut erfassen (KERSTEN et al., 1990).

Im Ergebnis der durchgeführten Messungen wurde deutlich, daß sich mit steigenden Partikelmengen die Metallkonzentrationen im SPM den Schwermetallgehalten der Sedimente nähern. Dies wird in den nachfolgenden Darstellungen gezeigt.

Abb. 11 Zunahme der Fe-Konzentration mit steigendem SPM-Gehalt (■ Oberflächensedimentkonzentration)

Ein gleicher Trend konnte beim Element Al festgestellt werden. Mit steigender SPM-Menge nehmen die Gehalte zu. Dabei nähern sich diese dem Sedimentgehalt an.

Abb. 12 Zunahme der Al-Konzentration mit steigendem SPM-Gehalt (■ Oberflächensedimentkonzentration)

Ähnlich wie bei den Elemente Fe und Al konnten auch beim Co mit zunehmender SPM-Menge zunehmende Konzentrationen festgestellt werden, die sich dem Sedimentwert annähern.

Abb. 13 Zunahme der Co-Konzentrationen mit steigendem SPM-Gehalt (
© Oberflächensedimentkonzentration)
Die Konzentrationsverläufe bei den Elementen Cu, Ni und Cd nehmen, entgegen den Elementen Al, Fe und Co, mit steigenden SPM-Werten ab. KERSTEN et al. (1990) beobachteten einen ähnlichen Verlauf für die biogenen Elemente im SPM und führten dies auf Verdünnungseffekte von biogenem Material durch resuspendierte mineralische Partikel zurück. Diese Elemente sind vorwiegend an organischer Matrix gebunden.

Abb. 14 Abnahme der Konzentrationen von Cu mit steigendem SPM-Gehalt (■ Oberflächensedimentkonzentration)

Im Ergebnis der Analysen zeigte sich auch bei Element Mn eine Annäherung an die Konzentrationen des Sedimentes mit zunehmendem SPM-Gehalt. Dies kann dadurch erklärt werden, daß das Element Mn als redoxsensibles Element infolge Sauerstoffarmut durch erhöhte Bioproduktion aus dem Sediment gelöst und in die Wassersäule freigesetzt wird. Daraus bilden sich durch Wiederausfällung Mn-Oxide, die wiederum durch resuspendiertes Sedimentmaterial verdünnt werden (DEHAIRS et al., 1989).

Beim Pb konnten analog abnehmende Gehalte festgestellt werden.

BRÜGMANN (1986) zeigte beim Element Pb eine hohe Affinität von SPM gebundenem Pb zu reaktiven Mn-Oxiden über die Abhängigkeit der K_D -Werte von Pb zur partikulären Mn-Konzentration. Die direkte Affinität konnten KERSTEN UND FÖRSTNER (1985) über eine Speziation von partikulärem Pb nachweisen. Adsorptionsversuche von KERSTEN et al. (1991) belegen diese Annahme ebenfalls.

Wechselwirkungen und Konzentrationsverhältnisse zwischen Schwebstoffen und der Wasserphase wurden im Bereich der Ostsee bereits umfangreich untersucht. Dies zeigen Arbeiten von BRÜGMANN (1986), HARMS UND BRÜGMANN (1990), BRÜGMANN (1988), BRÜGMANN et al. (1992), BELMANS et al. (1993) u.a.

So belegte BRÜGMANN (1986), daß die Elemente Fe, Co und Pb in partikulärem Material oft höher angereichert sind, als im Wasser gelöst. Die Einwirkung von Stürmen und eine damit einhergehende Remobilisierung von Sedimentpartikeln wurde in dieser Arbeit ebenfalls beschrieben. So konnten nach Starkwindperioden besonders die Elemente Al, Co, Fe und Pb in den Schwebstoffen gefunden werden.

EISMA UND KALF (1987) beschrieben für den Bereich der nördlichen Nordsee auch Resuspensionseffekte von Sedimenten aufgrund geringer Wassertiefen, Flußeinträgen und Küstenerosion. Liegt ein derartiger Einfluß vor, so läßt sich dies über eine Auftragung der Schwermetallgehalte im SPM gegen die Schwebstoffmasse nachweisen (DUINKER, 1983). Im Ergebnis dieser Arbeit konnten deutliche Resuspensionseffekte festgestellt werden. Diese stehen im Einklang mit bisherigen Ergebnissen und Untersuchungen anderer Autoren. So beschreiben KERSTEN et al. (1990) Zustände, bei denen mit hohen Schwebstoff-Frachten ein Konzentrationsniveau erreicht wird, das den Hintergrundwerten der Sedimente entspricht. Es wurde festgestellt, daß die Elemente Al und Fe mit dem Anteil resuspendierten Materials zunehmen, da diese Elemente vorwiegend in mineralischen Partikeln vorkommen. Ein Vergleich der Ergebnisse dieser Arbeit zeigte eine gute Übereinstimmung mit Ergebnissen von HARMS UND BRÜGMANN (1990).

Element	Gehalt im SPM (mg/kg) (Mittelwerte)
Al	3000
Mn	140
Fe	8800
Со	5
Ni	70
Cu	145
Cd	6
Pb	180

Um Abschätzungen über die Verteilungen von Schwermetallen zwischen partikulärer und Wasserphase vornehmen zu können, wurden Verteilungskoeffizienten (K_D -Werte) benutzt.

 $K_D = Me_{susp.} / Me_{diss.}$

Me_{susp.} = Gehalt im partikulären Material (SPM) [mg/kg] Me_{diss.} = Gehalt im Bodenwasser [mg/kg] BRÜGMANN (1986) stellte Verteilungskoeffizienten für den Bereich der Ostsee zusammen und verglich diese mit K_D-Werten aus der Nordsee und dem Atlantik.

Im Folgenden werden ausgewählte Werte den Ergebnissen dieser Arbeit gegenübergestellt.

Element	n	K _D -Werte (Mittelwerte)	K_D -Werte (Ostsee) BRUGMANN, (1986) (Mittelwerte) $n = 67$
Fe	108	7,31 +/- 13,7 10 ⁶	2,3 +/- 3,1 10 ⁶
Pb	119	1,81 +/- 7,3 10 ⁶	6,8 +/- 17 10 ⁶
Со	117	4,90 +/- 5,5 10 ⁵	4,2 +/- 5,7 10 ⁵
Cd	117	7,95 +/- 4,9 10 ⁵	2,5 +/- 4,9 10 ⁵
Cu	117	1,14 +/- 1,1 10 ⁵	1,8 +/- 2,3 10 ⁵
Ni	119	7,83 +/- 7,2 10 ⁴	$3,3 + - 4,4 \ 10^4$
Mn	66	6,68 +/- 6,9 10 ⁵	-

Tab.	6	Vergleich der K _D -Werte
------	---	-------------------------------------

Im Vergleich der ermittelten Werte konnten gute Übereinstimmungen bei den Elementen Co und Cu gefunden werden. Die Elemente Pb, Cd, Ni und Fe weisen K_D -Werte auf, die um den Faktor 2-3 höher liegen. Insgesamt wurden bei den gemittelten K_D -Werten große Standardabweichungen festgestellt. Dies steht in Übereinstimmung mit den Konzentrationsunterschieden in Abhängigkeit von den SPM-Gehalten und ist als Indiz für eine große Sedimentdynamik zu sehen.

Vergleicht man die K_D -Werte mit den SPM-Gehalten, so zeigt sich diese Dynamik sehr deutlich.

In der logarithmischen Darstellung zeigte sich eine breite Variation der K_D -Werte über zwei Größenordnungen, besonders deutlich bei bei den Elementen Co und Mn. Die Quotienten im Verteilungsmuster lassen sich in zwei Gruppen klassifizieren. Während bei der überwiegenden Zahl der Elemente kein Trend festzustellen war, traten bei Co und Mn Abnahmen der K_D-Werte mit zunehmendem SPM-Gehalt auf. Um diese Erscheinung interpretieren zu können, wurden Einzeldarstellungen der Beprobungskampagnen durchgeführt. Es konnte festgestellt werden, daß dieses Verteilungsmuster auf die Stagnationsperiode im September 1993 zurückzuführen ist. Durch die Sauerstoffverarmung und sich ausbildende sub- und anoxische Bedingungen wurden erhebliche Konzentrationsunterschiede in der gelösten Wasserphase festgestellt. Diese wiederum führten zu starken Veränderungen in den K_D-Werten.

BRÜGMANN (1986) verwies auf die besondere Rolle des Mn im redoxchemischen Verhalten der Metalle in der Ostsee, wobei Fe und Mn als wichtige Scavenging-Elemente, besonders für Co, Cd und Zn, hervorgehoben werden. Dabei spielen die Oxide oder Hydroxide des Mn und Fe für Herauslösungs- oder Fällungsvorgänge eine besondere Rolle. Die Ähnlichkeit des Co mit dem Mn im Redoxverhalten ist auch aus Vergleichen in Porenwasserprofilen bekannt (HEGGIE UND LEWIS, 1984).

Es wird deutlich, daß saisonal bedingte Änderungen der Redoxzustände im bodennahen Wasser für deutliche Unterschiede bei den K_D-Werten verantwortlich sind. Dabei nehmen die Elemente Mn und Co einen besonders deutlichen Platz ein.

Die Schlußfolgerung, daß partikuläre Materialien einen Einfluß auf die Konzentrationen der gelösten Metalle im Wasserkörper haben, liegt somit nahe und wird durch die Ergebnisse von BRUGMANN (1986) bestätigt.

Abb. 19 - 25 K_D - Werte der Metalle im Vergleich zur SPM-Konzentration

Gleichbedeutend mit der Beschreibung der Konzentrationsverhältnisse der terrigenen Elemente Fe und Al in den Schwebstoffen ist der Parameter POC. Der POC-Gehalt verdeutlicht dabei den Anteil an organischer Substanz und läßt eine Unterscheidung in frisch sedimentiertes Material und resuspendierte sedimentäre Anteile zu. Auf diesem Wege sollten sturmbedingte Remobilisierungen deutlich erkennbar werden.

Die Ergebnisse des Vergleiches zwischen POC und Gesamt-SPM zeigten sowohl im zentralen Bereich der Mecklenburger Bucht (Station 120), als auch in Küstennähe (Station 12c) deutlich geringere Anteile an POC in den Schwebstoffen. Dies läßt den Schluß zu, daß durch z.T. hohe Bodenströmungen anteilmäßig mehr Sedimentmaterial aufgewirbelt wird, der Anteil organikreicher Partikel gering ist.

Der mögliche Einfluß der Sturmperiode im November 1993 kann in seinen Auswirkungen nur am Beispiel des Transektes 23 beurteilt werden, da während dieser Beprobung der Einsatz des Bodenwasserschöpfers nur in der Lübecker Bucht möglich war.

* Die POC-Daten wurden von JÄMLICH, (1994), GEOMAR bestimmt.

Abb. 28 - 30 Vergleich POC zum SPM-Gehalt der Stationen 230, 23a und 23c

Die Ergebnisse des direkten Stationsvergleiches zeigen, daß der Anteil der partikulären organischen Substanz am Gesamt-SPM-Gehalt über die Beprobungszeiträume nahezu gleichmäßig verteilt war. Obwohl turbulenzbedingt höhere SPM-Mengen auftraten, nahmen die Anteile an organischem Material nicht gleichzeitig zu. Es läßt sich somit schlußfolgern, daß Resuspensionseffekte beim SPM turbulenzbedingt auftreten. Aufgewirbeltes Sediment nimmt dabei den überwiegenden Anteil ein.

KERSTEN et al. (1990) fanden für die Nordsee eine deutliche Abnahme der POC-Gehalte mit steigender SPM-Menge, d.h. mit zunehmendem Sedimentcharakter der Schwebstoffe. Im Ergebnis dieser Arbeit für den Bereich der Mecklenburger Bucht ist diese Tendenz auch festzustellen.

Abb. 31 Vergleich POC zu SPM-Gehalt

4.2.2.2 Extraktionsexperimente am partikulären Material

Eine Reihe von Autoren (KERSTEN UND FÖRSTNER, 1985; BRÜGMANN, 1986; LORING UND RANTALA, 1992) u.a. beschreiben Extraktionsmethoden zur Abschätzung von Mobilisierbarkeit oder Bindungsformen von Schwermetallen in suspendiertem Material. In dieser Arbeit wurden die SPM-Proben mit 0.5 M HCL extrahiert. Einerseits resultiert dieser Ansatz daraus, daß so eine Vergleichbarkeit mit früheren Arbeiten aus dem Seegebiet durchgeführt werden kann und andererseits eine Abschätzung über Mobilisierbarkeit und dem anthropogenen Anteil der Schwermetalle im Schwebstoff möglich wird. Die Ergebnisse der graphischen Auswertung zeigen sowohl saisonal als auch stationär breite Schwankungen in den HCL-extrahierbaren Metallgehalten. Die mobilisierbaren Anteile der einzelnen Metalle wiesen deutliche Schwankungen auf. So konnten bei den Elementen Cu, Cd, Zn, Pb und Mn in den meisten Fällen mehr als 80 % des Metallanteils remobilisiert werden. Bei Co und Fe lagen die mobilen Anteile bei > 50 %. Das Element Ni wies mobile Anteile auf, die saisonal zwischen 50-80% schwankten. Beim Al konnten die geringsten mobilen Anteile gefunden werden. Dies resultiert daraus, daß es sich bei den Al-Anteilen meist um Alumosilikate sind, die in HCL nicht löslich sind. Mn zeigte hohe mobile Anteile im SPM. Es wurden Werte > 80% gefunden. Die Elemente Fe, Co und Mn zeigten während der Stagnationsperiode im September 1993 eine Mobilisierbarkeit aus den Schwebstoffen. Es wurden Mobilisierbarkeiten von nahezu 95-100 % erreicht. Dabei wurden beim Co im Gegensatz zum Fe und Mn während der gesamten Beprobungszeit nahezu gleichbleibende Gesamtgehalte an den Partikeln festgestellt. Die Gehalte an HCL-löslichem Fe und Mn schwankten hingegen stark.

Ähnlichkeiten der erhaltenen Ergebnisse lassen sich mit den von BRÜGMANN (1986) gefundenen Trends feststellen. Beim Element Pb fand BRÜGMANN (1986) eine Konzentrationserhöhung um den Faktor 4 nach einem Sturmeinfluß. Wesentlich erhöhte Konzentrationen wurden auch im Untersuchungsgebiet gefunden, wenn auch die unterschiedlichen Randbedingungen einen direkten Vergleich sehr schwierig machen.

Abb. 32 Saisonale Verteilung der Schwermetallgehalte im SPM von Station 120

Abb. 33 Saisonale Verteilung der Schwermetallgehalte im SPM von Station 12b

Abb. 34 Saisonale Verteilung der Schwermetallgehalte im SPM von Station 12c

Abb. 35 Saisonale Verteilung der Schwermetallgehalte im SPM von Station 230

Ì

Abb. 36 Saisonale Verteilung der Schwermetallgehalte im SPM von Station 23a

Abb. 37 Saisonale Verteilung der Schwermetallgehalte im SPM von Station 23c

Zusammenfassung der Ergebnisse aus Abschn. 4.2.2

Im Jahresgang konnten zum Teil beträchtliche Unterschiede in den Schwebstoffgehalten innerhalb der bodennahen Trübezone festgestellt werden. Dies ist als Folge der meteorologischen Bedingungen sowie der Strömung im bodennahen Bereich zu sehen.

Ein Vergleich zwischen SPM-Menge und **POC-Gehalt** zeigte dabei deutlich, daß der Anteil organischen Materials im Vergleich zur Gesamtmenge gering ist. Daraus läßt sich schlußfolgern, daß hier ein hoher Anteil detritischen Materials (Sediment) im SPM vorlag. Betrachtet man die Beprobungshöhen über dem Sediment, so zeigte sich, daß teilweise eine Gradientenbildung vorlag. Dabei wurden im Abstand von 5 cm über dem Sediment die höchsten Partikelmengen festgestellt.

Anhand der Betrachtung der terrigenen Elemente Al, Fe und Mn konnte nachgewiesen werden, daß mit steigenden SPM-Gehalten die Gehalte der Metalle bis zu einem Wert ansteigen, der dem der Oberflächensedimente entspricht. Beim Co konnte ein gleicher Trend festgestellt werden. Bei den Elementen Cu, Pb und Cd konnte festgestellt werden, daß mit steigenden SPM-Mengen eine Abnahme der Gehalte vorlag. Dies kann auf "Verdünnungseffekte" durch resuspendierte Partikel zurückgeführt werden, da diese Elemente vorwiegend an organischer Matrix gebunden sind.

Bei den Verteilungskoeffizienten (K_D -Werte) zeigte sich, daß die erfaßten Werte eine beträchtliche Standardabweichung aufwiesen, was die hohe Sedimentdynamik unterstreicht. Für Fe wurde beispielsweise ein K_D -Wert von 7,31 +/- 13,7 10⁶ ermittelt, für Mn 6,68 +/- 6,9 10⁵.

Es zeigte sich, daß die partikulären Materialien einen hohen Einfluß auf die Konzentrationen der gelösten Phase im Wasserkörper haben.

Zur Abschätzung der Mobilität der Metalle aus dem SPM wurden Extraktionsexperimente durchgeführt.

Die Ergebnisse der graphischen Auswertung zeigten sowohl saisonal als auch stätionär breite Schwankungen in den Metallgehalten. Die mobilisierbaren Anteile der einzelnen Metalle wiesen deutliche Unterschiede auf. So konnten bei den Elementen Cu, Cd, Zn, Pb und Mn in den meisten Fällen mehr als 80 % des Metallanteils mobilisiert werden. Bei Co und Fe lagen die mobilen Anteile bei > 50%. Das Element Ni wies mobile Anteile auf, die saisonal zwischen 50 - 80 % schwankten.

Erwartungsgemäß konnten beim Al die geringsten mobilen Anteile gefunden werden. Dies resultiert daraus, daß die Al-Anteile meist Alumosilikate sind, die aus dem Sediment remobilisiert werden. Diese sind chemisch stabil.

Die Elemente Fe, Co und Mn zeigten, besonders während der Stagnationsperiode im September 1993, eine sehr gute Mobilisierbarkeit aus den Schwebstoffen. Es wurden Mobilisierbarkeiten von nahezu 95 - 100 % erreicht. Dabei wurden beim Co im Gegensatz zum Mn und Fe während der gesamten Beprobungszeit nahezu gleichbleibende Gesamtgehalte an den Partikeln festgstellt. Die Gehalte an Fe und Mn schwankten dahingegen stark.

5. Untersuchungen an Sediment-Kernen des Untersuchungsgebietes

Kenntnisse zur Struktur und Beschaffenheit von Sedimenten sind ein wesentlicher Faktor in der Untersuchung und Beurteilung von Stoffkreisläufen in komplexen Ökosystemen (SCHLUNGBAUM, 1978). Gleichzeitig ermöglichen sie die Charakterisierung der Situation und die Beurteilung von anthropogenen Belastungen in Gewässern.

Zur Charakterisierung der Situation im Untersuchungsgebiet wurden daher die Korngrößenverteilung, die Gehalte an organischem und anorganischem Kohlenstoff und Schwefel sowie die Wassergehalte des Sedimentes ermittelt.

5.1 Die Korngrößenverteilungen

Zur Erlangung eines Überblickes der Korngrößenverteilung wurden 4 Kerne aus den zwei Schnitten der Mecklenburger Bucht gezogen. Es handelt sich dabei um Kerne der Stationen 120 und 12a (direkte Mecklenburger Bucht) und der Stationen 230 und 23a (Lübecker Bucht). Diese stammen aus der Beprobungsfahrt im September 1993.

Die erhaltenen Ergebnisse zeigten ein unterschiedliches Bild im Hinblick auf die Gehalte der Kornfraktionen. Als Methode diente die Laser-Partikelanalyse.

Im einzelnen wurde festgestellt:

Kern 12o:

Der Tongehalt des Kerns 120 schwankte zwischen 3,1 % in den oberen Sedimentschichten bis 0,38% in den tieferen Bereichen (40 cm). Dabei konnten die höchsten Gehalte in den ersten 12 cm festgestellt werden Insgesamt war die Ton-Fraktion (Interpretation nach der Korngröße $< 2 \mu m$) die kleinste Fraktion für den gesamten Kern. Die Siltfraktion (2 - 63 μm) war im Kern 120 die größte Fraktion mit einem Anteil von 42,9 - 96,18 %. Der Sandanteil (> 63 μm) variierte zwischen 0,69 - 56,7 %. Im Tiefenverlauf der Korngrößenverteilung dieses Kerns zeigte sich eine Abnahme des Siltgehaltes und Zunahme des Sandanteils. Dabei wurde ein sehr sprunghafter Wechsel bei den Fraktionen beobachtet. Kern 12b:

Bei diesem Kern konnte im Kornbereich < 2µm ein Anstieg der Gehalte der Tonfraktion festgestellt werden. Diese schwankte zwischen 0,3 -
6,7 %. Eine sprunghafte Veränderung der Tongehalte in die Tiefe war für diesen Kern signifikant. Der Siltgehalt dominierte in diesem Kern mit Gehalten zwischen 39,8 - 95,9 %. Die Sandfraktion war in diesem Kern in ihren Gehalten wesentlich geringer, als im Kern 120. Neben einem Spitzenwert bei 22 cm Tiefe von 59,85 % konnten lediglich Gehalte von 0,8 - 9,6 % bestimmt werden. Wie bereits beim Ton, so konnten für die Silt und Sandfraktionen ebenfalls sprunghafte Veränderungen in den Korngrößen festgestellt werden.

Im Vergleich beider Stationen konnten für den Kern 120 höhere Sandanteile ermittelt werden. Der Tonanteil lag bei Station 12b höher, als bei Kern 120. Bei 12b überwog jedoch der Siltanteil deutlicher als bei Station 120.

Kern 230: Der Tonanteil dieses Kern lag bei 0,9 - 5,7%. Tendentiell zeigte sich eine leichte Abnahme mit der Tiefe, die teilweise auch durch sprunghafte Veränderungen gekennzeichnet war. Betrachtet man den gesamten Korngrößenbereich, so liegen die Gehalte an Ton über denen der Sandfraktion. Der Siltbereich war in diesem Kern die Hauptfraktion mit einem Kornanteil von 77,9 - 95,8%. Die Sandfraktion stellte mit Gehalten von 1,1 - 7,9% insgesamt gesehen die kleinste Fraktion dar. Lediglich eine sprunghafte Anhebung bei 16 cm mit 21,09% war zu verzeichnen.

Kern 23b: Beim Kern 23b wurde ein Tonanteil von 0,23 - 2,4 % festgestellt. In Abhängigkeit von der Tiefe ist der Tongehalt leicht ansteigend, bildet zwischen 5-8 cm einen Maximalbereich und nimmt dann wieder ab. Der Siltgehalt verhält sich in seinen Anteilen nahezu gleich mit dem Tongehalt. Auch hier findet man einen Anstieg mit der Tiefe, der sein Maximum bei 6 cm Tiefe hat. Die überwiegende Sandfraktion bei diesem Kern liegt im Gehaltsbereich von 48,78 - 95 %. Die Kerne 230 und 23b unterscheiden sich im Hinblick auf die Hauptfraktion sehr deutlich. Der geringe Sandanteil bei Kern 230 und der beträchtliche Sandanteil bei Kern 23b stellen gravierende Unterschiede dar und lassen sehr unterschiedliche Ergebnisse bei den Schwermetallanalysen erwarten.

Abb. 38 Korngrößenverteilungen der Kerne 120, 12a, 230 und 23b (Ton-Fraktion auf gesonderter Achse)

Der Korngrößenbereich < 63 μ m repräsentiert den Bereich in den Sedimenten, der für die Aufnahme von Schwermetallen besonders bedeutend ist (SCHOER et al., 1982). Für die Interpretation der Ergebnisse ist dabei von Bedeutung, ob dieser Bereich der Kornfraktion, der den Tonanteil (< 2 μ m) und den Siltanteil (>2 - 63 μ m) repräsentiert, auch tatsächlich durch die Elemente Al, Fe oder Al geprägt ist, oder ob sich sich bspw. um partikuläres organisches Material handelt.

Abb. 39

Stratigraphie von Silt, Ton, Li, Fe, Al und C-org. an Kern 120

Die Tonfraktion bei Kern 120 wird nach den Ergebnissen des Vergleiches zwischen den Elementen Fe, Li, Fe und C-org. vorwiegend durch die Elemente Li und Fe repräsentiert. Al ist in der Tonfraktion von geringerer Bedeutung. Der organische Kohlenstoff korrelierte mit der Tonfraktion ebenfalls, was ein Hinweis auf organischen Schlick ist. Eine Übersicht über die Korrelationskoeffizienten zeigt die nachfolgende Tabelle.

Tab. 7 Korrelationskoeffizienten Kern 120 (n = 18)

Fraktion	Li	Fe	Al	C-org.
< 2 µm (Ton)	0,87	0,58	0,35	0,53
>2-63 µm (Silt)	0,35	0,19	0,28	0,11

Für die Siltfraktion wurden jedoch nur geringe Korrelationen zu den Elementen Li, Fe, Al und zum C-org. gefunden. Dies legt nahe, daß sich in der Siltfraktion Schichtminerale unterschiedlicher Typologie befinden, die zum Teil nicht aus diesen Elementen aufgebaut sind, siehe HEIM (1990).

Abb. 40 Stratigraphie von Silt, Ton, Li, Fe, Al und C-org. an Kern 12b

Tab. 8 Korrelationskoeffizienten Kern 12 b (n = 20)

Fraktion	Li	Fe	Al	C-org.
< 2 µm (Ton)	0,38	0,38	0,07	0,22
> 2-63 µm (Silt)	0,19	0,36	0,014	0,01

Nach den Ergebnissen lassen sich bei Kern 12b die besten Korrelationen für die Elemente Li und Fe in der Tonfraktion feststellen.

Insgesamt bestehen die bei diesem Kern vorliegenden Schichtminerale aus anderen Elementen.

Abb. 41 Stratigraphie von Silt, Ton, Li, Fe, Al und C-org. an Kern 230

Tab. 9 Korrelationskoeffizienten bei Kern 230 (n = 27)

Fraktion	Li	Fe	Al	C-org.
< 2 μm (Ton)	0,20	0,15	0,03	0,65
>2-63 µm (Silt)	0,09	0,055	0,25	0,13

Nach den Ergebnissen haben die Elemente Li, Fe, Al die geringste Bedeutung in den Mehrschichtmineralen der Ton- und Siltfraktion bei Kern 230. Hervorzuheben ist jedoch die gute Korrelation des organischen Kohlenstoffes mit der Tonfraktion.

Die besten Korrelationen zwischen den Kornfraktionen und den Elementen Li, Al, Fe und dem C-org. wurden bei Kern 23b ermittelt. Im Tiefenverlauf folgen die Elementkonzentrationen dem Bild der Kornfraktionen und werden durch diese gut repräsentiert.

Fraktion	Li	Fe	Al	C-org.
< 2 µm (Ton)	0,75	0,81	0,68	0,75
> 2-63 µm (Silt)	0,97	0,96	0,98	0,96

Tab.	10	Korrelationen	bei Kern	23b ((n = 15)	

Abb. 42 Stratigraphie von Silt, Ton, Li, Fe, Al und C-org. an Kern 23b

5.2 Die Gehalte an Kohlenstoff und Schwefel

Für die bereits unter Pkt. 5.4.1 beschriebenen Kerne wurden die Parameter Kohlenstoff und Schwefel bestimmt. Für Kohlenstoff wird eine Differenzierung in Gesamt-Kohlenstoff und Organischen Kohlenstoff vorgenommen. Der Schwefelgehalt des Sedimentes wird als Gesamtwert angegeben. Station 120: Der Schwefelgehalt des Kerns lag zwischen 0,45 - 2,1 %. Die Tendenz in tiefere Sedimentschichten war zunehmend.

> Die Gehalte des Gesamt-Kohlenstoffes lagen zwischen 5,19 - 4,74 %. Dabei war zunächst eine Abnahme bis in eine Tiefe von 15 cm zu verzeichnen. Bei den Proben wurde ein deutlich überwiegender Teil an organischem Kohlenstoff festgestellt. Karbonatanteile lagen bei ca. 0,5%.

Station 12b: Die Gehalte an Schwefel in den Proben dieses Kerns lagen zwischen 0,28-2,3%. Es zeigte sich auch an diesem Kern, daß eine zunehmende Tendenz mit der Sedimenttiefe auftrat. Bei der Bestimmung des Gesamt-Kohlenstoffes war, wie auch bei der Station 120 ein überwiegender organischer Anteil festzustellen. Der Karbonatanteil lag ebenfalls bei ca. 0,5 %. Wie auch bei Kern 120 konnte eine Abnahme im Kohlenstoffgehalt mit der Tiefe bis ca. 15 cm festgestellt werden. Danach erfolgte auch hier eine Zunahme.

Bei beiden Kernen dieses Schnittes konnten somit sehr ähnliche Gehalte und Tendenzen festgestellt werden, was eine gute Vergleichbarkeit in bezug auf die Schwermetallanalyse möglich macht.

Station 230: Bei diesem Kern konnten Gehalte an Schwefel von 0,7 - 1,55 % festgestellt werden. Mit zunehmender Tiefe erfolgte ein Anstieg der gemessenen Konzentrationen, die jedoch nicht die Größenordnung der Stationen 120 und 12b erreichten. Der Gesamtkohlenstoffgehalt dieses Kerns lag zwischen 6,03 - 3,6 %. Ein Karbonatanteil von ca. 0,5 - 0,7 % konnte festgestellt werden. Insgesamt konnte bei diesem Kern eine eher kontinuierliche Abnahme des Kohlenstoffes mit der Tiefe festgestellt werden.

Station 23b: Der Schwefelgehalt des Kerns 23b lag teilweise deutlich niedriger, als bei Station 23o. Es konnten Werte von 0,05 - 0,65% ermittelt werden.
Bei den Messungen konnte ein starkes Maximum bei 5 cm Tiefe fest-

gestellt werden. Da in diesem Bereich auch die Maxima von Li und der Silt-Fraktion lagen, muß mit einem Korngrößeneffekt gerechnet werden. Auch die Gehalte an Kohlenstoff in den Proben des Kerns 23b lagen deutlich niedriger als im Kern 23o. Es wurden Werte von 0,18 -1,77 % ermittelt. Ein deutliches Maximum lag auch hier bei 5 cm Tiefe. Um dieses Maximum konnten auch Karbonatgehalte ermittelt werden, die bei ca. 0,5 % lagen.

Bei diesen beiden Kernen der Stationen 230 und 23b konnten recht beträchtliche Unterschiede sowohl im Gesamt-Schwefelgehalt als auch im Gesamt-Kohlenstoffgehalt festgestellt werden

Es zeigte sich, daß die Station 23b ein Maximum in den sonst geringeren Konzentrationen bei 5 cm Tiefe aufwies.

Abb. 43 Verteilung von Schwefel und Kohlenstoff der Kerne 120, 12b, 230 und 23b

Die hohen Gehalte an Schwefel im Sediment geben einen Hinweis auf möglicherweise auftretende Bildungen von Eisensulfiden (FeS und FeS₂).

5.3 Der Wassergehalt

Die Ergebnisse der Wassergehaltsuntersuchungen zeigten eine steile Abnahme bis in 14 cm Tiefe, was auf Verdichtungsvorgänge des feinen Materials im tieferen Bereich und die hohe Wasserkapazität organischer Sedimente zurückzuführen ist.

Bei der Station 23b konnten aufgrund des Sandanteils wesentlich geringere Wassergehalte gefunden werden.

Abb. 44 Wassergehalt der Kerne 120, 12a, 230 und 23b

5.4 Die Schwermetalle

Die in dieser Arbeit durchgeführten Analysen der Schwermetalle wurden analog LEIPE et al. (1989) und PERTTILÄ UND BRÜGMANN (1992) an der Fraktion < 63 μ m durchgeführt, ohne die als "unwirksam" im Hinblick auf die Schwermetallbelastung geltende Sandfraktion (FÖRSTNER UND SALOMONS, 1980). Ein weiterer Aspekt zu dieser Entscheidung war die Tatsache, daß die Hauptfraktionen, mit Ausnahme der Station 23b, im Bereich < 63 μ m lagen, was auch von BRÜGMANN UND LANGE (1990) u.a. in diesen Bereichen der Ostsee festgestellt wurde sowie der Vergleichbarkeit mit anderen Arbeiten.

66

An den Sedimentproben wurden nach Totalaufschluß (HF/ HNO₃) die Elemente Mn, Fe, Al, Li, Co, Ni, Cd, Pb, Zn, Cu und Cr vermessen.

5.4.1 Schwermetallgehalte und Extraktionsexperimente

Bindungsformen von Schwermetallen in Sedimenten sind eine wichtige Grundlage zur Charakteristik von Sedimenten. Dabei beeinflussen die Bindungsformen im wesentlichen die Mobilität der Metalle.

Die Methoden zur Ermittlung von Bindungsformen sind unterschiedlich. So sind einerseits komplexe Extraktionsmodelle (FÖRSTNER, 1983), (KERSTEN UND FÖRSTNER, 1989), anderer-seits vereinfachte Methoden (LORING UND RANTALA, 1988), (LEIPE et al., 1989).

Einstufige Extraktionsmethoden, etwa mit 0,5 M HCL, lassen Aussagen über Mobilität unter extremen Bedingungen zu, sind für Aussagen über Bioverfügbarkeit jedoch nur sehr bedingt verwendbar.

Die Experimente zur Extrahierbarkeit mit verdünnter HCL lassen somit eine Bewertung des verbleibenden Dedritus zu, der als Differenz zwischen Totalgehalt und extrahierbarem Gehalt angesehen werden kann (BRÜGMANN UND LANGE, 1990).

Die Sedimentproben der Stationen 120, 12b, 230 und 23b wurden analog BRÜGMANN UND LANGE (1990) mit 0.5 M HCL extrahiert.

Die Ergebnisse zeigen, daß die einzelnen Metalle sehr unterschiedliches Verhalten gegenüber der Einwirkung von 0.5 M HCL aufweisen. Neben den Profilverläufen für die Metalle Zn, Pb, Cu und Cd als anthropogene Elemente sowie den nahezu konstanten Konzentrationsverläufen für Cr, Ni, Co, Fe und Al zeigt das Element Mn eine deutliche Zunahme in der Konzentration mit steigender Tiefe. Dieser Effekt wurde bereits von LAPP UND BALZER (1993) beschrieben. Als Ursache für diesen Konzentrationsverlauf wurden durch Eutrophierung bedingte Sauerstoffmangelzustände genannt, die zur Entstehung von sub- und anoxischen Bedingungen an der Grenzfläche Sediment / bodennahes Wasser führten. Eine Folge dieser Situation war eine Remobilisierung und damit Herauslösung von Mn aus dem Sediment über das Porenwasser infolge Diffusionsmigration.

Die von LAPP UND BALZER (1993) getroffene Schlußfolgerung, daß die Redoxbedingungen sich durch anthropogen bedingte Nährstoffeinträge und damit verbundener Sauerstoffmangelsituationen seit der Industrialisierung anoxischer geworden sind, kann nach den vorliegenden Ergebnissen ebenfalls für den Bereich der Mecklenburger Bucht festgestellt werden.

Gleichfalls konnte beobachtet werden, daß die HCL-Mobilisierbarkeit des Mn mit zunehmender Tiefe geringer wird. Als mögliche Ursache hierfür kann die Bildung von Mn-Sulfiden (z.B. MnS) angenommen werden. Dies ist unlöslich.

Eine Mobilisierbarkeit von Mangan aus dem Sediment ist möglich, da das Mangan sich den Redoxprozessen durch Änderung der Oxidationsstufe anpaßt. So ist das MnS unlöslich, das reduzierte Mn²⁺ jedoch löslich (LAXEN et al., 1984) u.a.

Abb. 45 Vergleich Totalaufschluß - Extraktion Kern 120

mg/kg % 2,5 n n Sedimenttiefe (cm) P P 딬 ም ----mg/kg mg/kg 12,5 mg/kg Sedimenttiefe (cm) ------ Co-T Mn-T N-T ----Mn-L ł mg/kg µg/kg mg/kg Sedimenttiefe (cm) Cd-T Ę PP ---- Cu-L - Cd-L Pb-L 1,5 mg/kg mg/kg 0,75 mg/kg Sedimenttiefe (cm) Zn-T - Mg-T •----Zn-L •--- Mg-L é , F ----

Der bei Kern von Station 120 erhaltene Konzentrationsverlauf von Mangan wird beim Vergleich der Gehalte am Kern der Station 12b bestätigt.

Abb. 46 Vergleich Totalaufschluß - Extraktion Kern 12b

Die Ergebnisse der Extraktionsversuche an den Sedimentproben von Kern 230 belegen gerade bei den Elementen Zn und Cd sowie Pb und Cu den anthropogenen Eintrag.

Abb. 47 Vergleich Totalaufschluß - Extraktion Kern 230

Es wird weiterhin deutlich, daß die Gesamtgehalte an Zn, Pb, Cd und Cu bei Kern 230 im Vergleich zum Kern 120 und 12b bis zum Faktor 2 größer sind.

Die Metalle Ni, Co, Al, Fe und Cr sowie das Mangan liegen bei Kern 230 im gleichen Konzentrationsbereich, wie bei den Kernen 120 und 12b.

Auch bei Kern 230 wird die Abnahme der Mn - Konzentration im oberen Sedimentbereich sehr deutlich.

Der Konzentrationsverlauf im Tiefenprofil bei Kern 23b (Sandstation) folgt einerseits dem typischen Bild für anthropogen belastete Sedimente (siehe Zn, Cd, Pb und Cu), andererseit wird hier der Einfluß der bioturbaten Einbringung von Schlickpartikeln ins Sediment deutlich. So zeigen Al, Fe, Ni und Co Konzentrationsmaxima im Bereich von 5 - 6 cm Tiefe. In diesem Bereich lagen auch die Maxima für die Ton und Siltgehalte bzw. für den organischen Kohlenstoff.

Abb. 48 Vergleich Totalaufschluß - Extraktion Kern 23b

Ein direkter Vergleich der prozentualen Mobilisierbarkeitsanteile wird nachfolgend in tabellarischer Form durchgeführt.

Tab. 11	Anteile mobilisierbarer und residualer Metalle bei Kern 120 des Unter-
	suchungsgebietes (Angaben in %)

Station Tiefe	Art	Al	Fe	Mn	Со	Ni	Zn	Cď	РЪ	Cu
120				A CONTRACTOR OF A CONTRACTOR O						
l cm	mob.	-	-	-	-	Г <u>–</u>	-	-	-	-
	res.	-	-	-	-	-	-	-	-	-
5 cm	mob.	6	24,9	43,5	29,1	34,3	68,2	67,5	93,8	63,4
	res.	94	75,1	56,5	70,9	65,7	31,8	32,5	6,2	36,6
10 cm	mob.	6,9	12,5	31	28,8	32,8	76,8	73,7	93,6	58,6
	res.	93,1	87,5	69	71,2	67,2	23,2	27,3	6,4	41,4
20 cm	mob.	5,2	16,9	37,5	32,3	38,3	45	64,9	95,0	42,3
	res,	94,8	83,1	62,5	67,7	61,7	55	35,1	5,0	57,7
30 cm	mob.	5,9	15,9	37,1	31,4	38,5	43,5	91,52	86,0	27,4
6	res.	94,1	84,1	62,9	68,6	61,5	56,5	8,48	41,0	72,6
40 cm	mob.	5,7	17,9	38,4	32,9	41,5	44,9	65,4	100	40,9
	res.	94,3	82,1	61,6	67,1	58,5	55,1	34,6	0	59,1
50 cm	mob.	-	-	_	_	-	-	-	-	-
	res.	-	-	-	-	-	-	-	-	-

Tab. 12	Anteile mobilisierbarer und residualer Metalle bei Kern 12b des Unter-
	suchungsgebietes (Angaben in %)

Station Tiefe	Art	Al	Fe	Mn	Со	Ni	Za	Cd	Рв	Cu
12b				0.0000000000000000000000000000000000000						
1 cm	mob.	6,2	29,8	73,4	31,5	34,0	70,5	50,8	98,5	59,1
50c00160	res.	93,8	70,2	26,6	68,5	66,0	29,5	49,2	1,5	40,9
5 cm	mob.	6,2	14,0	30,2	25,1	34,6	73,9	71,4	99,5	65,4
	res.	93,8	86,0	69,8	74,9	65,4	26,1	28,6	0,5	34,6
10 cm	mob.	4,3	10,9	23,2	35,1	33,0	68,5	56,9	98,1	46,5
	res.	95,7	89,1	76,8	64,9	67,0	31,5	43,1	1,9	53,5
20 cm	mob.	4,9	11,8	30,0	33,0	33,0	46,2	72,3	90,3	35,7
	res.	95,1	88,2	70,0	67,0	67,0	53,8	27,7	9,7	64,3
30 cm	mob.	4,2	10,5	23,2	15,4	23,0	58,9	57,3	95,3	12,0
	res.	95,8	89,5	76,8	84,6	77,0	41,1	42,7	4,7	88,0
40 cm	mob.	-	-	-	-	-	-	-	-	-
	res.	-	-	-	-	-	-	-	-	-
50 cm	mob.	-	-	-	-	-	-	-	-	-
	res.	-	-	-	-	-	-	-	-	-

Station Tiefe	Art	A	Fe	Mn	Со	Ní	Zn	Cd	РЬ	Cu
230					a mana a series					
l cm	mob.	5,2	29	40,9	8,7	30,7	69,9	69,7	96,1	74,9
	res.	94,8	71	59,1	91,3	69,3	30,1	30,3	3,9	25,1
5 cm	mob.	5,6	21	17,7	9,8	32,6	75,4	81,1	93,3	73,1
	res.	94,4	79	82,3	90,2	67,4	24,6	18,9	6,7	26,9
10 cm	mob.	8,4	14,8	21,2	7,6	31,1	89,5	85,4	96,5	64,9
	res.	91,6	85,2	78,8	92,4	68,9	10,5	94,6	3,5	35,1
20 cm	mob.	6,5	16,7	18,5	12,4	30,1	86,5	80,2	97,7	65,8
	res.	93,5	83,3	81,5	87,6	69,9	13,5	19,8	2,3	34,2
30 cm	mob.	5,2	14,4	22,5	9,5	27,9	58	68,2	62,4	34,2
	res.	94,8	85,6	77,5	90,5	72,1	42	31,8	37,6	65,8
40 cm	mob.	5,6	14,7	19,1	10,4	28,1	-50,4	32,9	65,3	25,9
	res.	94,4	85,3	80,9	89,6	71,9	49,6	67,1	34,7	74,1
50 cm	mob.	5,8	13,4	20,5	11,5	28,3	50,1	33,5	65,4	18,5
	res.	94,2	86,6	79,5	88,5	71,7	49,9	66,5	34,6	81,5

Tab. 13Anteile mobilisierbarer und residualer Metalle bei Kern 230 des Unter-
suchungsgebietes (Angaben in %)

Tab. 14

Anteile mobilisierbarer und residualer Metalle bei Kern 23b des Untersuchungsgebietes (Angaben in %)

Station Tiefe	Art	Al	Fe	Mn	Co	Ni	Zn	Cd	Pb	Cu
23b										
l cm	mob.	4,0	20,1	35,9	16	33,8	82,6	55,6	84,4	65,3
2	res.	96,0	79,9	64,1	84	66,2	17,4	44,4	15,6	34,7
5 cm	mob.	5,1	11,9	26,9	27,2	39,4	76,9	68,9	88,8	61,1
	res.	94,9	88,1	73,1	72,8	60,6	23,1	31,1	11,2	38,9
10 cm	mob.	4,4	10,2	10,7	-	20,1	73,6	97,8	43,9	54,9
	res.	95,6	89,8	89,3	-	79,9	26,4	2,2	56,1	45,1
20 cm	mob.	3,7	9,8	9,8	11,1	17,8	56,6	51,9	15,8	60,6
	res.	96,3	90,2	90,2	88,9	82,2	43,4	48,1	84,2	39,4
30 cm	mob.	-	· -	-	-	-	-	-	-	-
	res.	-	-	-	-	-	-	-	-	-
40 cm	mob.	-	-	-	-	-	-	-	-	-
	res.	-	-	-	-	-	-	_	-	-
50 cm	mob.	-	-	-	-	-	-	-	-	-
	res.	-	-	-	-	-	-	-	-	-

Die Ergebnisse der Extraktionsexperimente an den Kernprofilen zeigen ein übereinstimmendes Bild.

Die Elemente Al, Fe, Co und Ni weisen hohe residuale Anteile auf. Diese liegen bei Al zwischen 91 - 96 %. Beim Element Fe konnten Anteile von 79 - 87 % als stabil gebunden festgestellt werden. Die Mobilisierbarkeitswerte von Co wurden bei Kern 120 und Kern 12b zwischen 28 - 32 % gefunden. Das entspricht einem residualen Anteil, der zwischen 68 - 72 % liegt. Geringere Remobilisierungsanteile beim Element Co konnten bei Transekt 23 an den Kernen 230 und 23b festgestellt werden. So lagen hier die mobilen Anteile zwischen 8 -11 % an Kern 230 (residual: 87 - 92 %) und an Kern 23b 11 - 27 % (residual: 72 - 89 %). Die Mobilität des Elementes Nickel ist nahezu gleichmäßig im Vergleich der Stationen. Die mobilisierbaren Anteile liegen im Bereich von 20 - 40 %.

Im Vergleich der Werte mit (BRÜGMANN UND LANGE, 1990), die Angaben zur Station 120 machten, kann eine deutliche Übereinstimmung bei den Elementen Al und Fe verzeichnet werden. Höhere Mobilitäten wurden für die Elemente Co und Ni gefunden.

Weiterhin wurden von (BRÜGMANN UND LANGE, 1990), für das Element Mn eine hohe Mobilisierbarkeit durch eine HCL-Extraktion im ersten Zentimeter des Sedimentes gefunden. Das gleiche Ergebnis wurde im Rahmen dieser Arbeit für die Station 12b erhalten. Die Mobilisierbarkeit lag bei 73,4 %, d.h. der residuale Anteil nahm mit 26,6 % eine deutlich untergeordnete Stellung ein. Es kann angenommen werden, daß die Mobilität des Elementes Mn in der obersten Schicht des Kerns 12o diesem Ergebnis entspricht. Im Tiefenverlauf werden in o.a. Arbeit weit geringere Mobilitäten für Mn angegeben. Im Rahmen dieser Arbeit wurden mobile Anteile zwischen 20 - 30 % bei Transekt 12 gefunden. Die Mobilität des Mn im obersten cm der Kerne des Transektes 23 weisen im Vergleich zur Tiefe zwar erhöhte Mobilisierbarkeiten auf, erreichen jedoch nur Größenordnungen zwischen 35 - 40 %. Ähnlich hohe Mobilisierbarkeiten fanden BRÜGMANN UND LANGE (1990) an Stationen in der Gotlandsee. Für eine Station im Arkona-Becken wurden Mobilitäten festgestellt, die den Ergebnissen von Transekt 23 entsprechen.

Für den Bereich der Mecklenburger Bucht fand DAMM (1992) nach Bindungsformanalyse mittels sequentieller Extraktion einen dedritisch fixierten Anteil des Mn von 50 %. Den Hauptbindungsanteil bei Mn nehmen oxidative Bindungen ein, weiterhin herrschen in der Reihenfolge der Bedeutung mäßig reduzierbare, karbonatige und leicht reduzierbare Bindungen vor. Der geringste Bindungsanteil beim Mn ist der adsorptive. Höhere Mobiliserbarkeiten von Mn wurden von LEIPE et al. (1989) in eutrophen Boddenbereichen und im Oderhaff gefunden. So wiesen Oberflächensedimente des Kleinen Jasmunder Boddens 63 %, des Achterwassers 68 %, des Peenestromes 68 % und des Oderhaffs 84 % HCl - extrahierbares Mn auf.

Der ansteigende Konzentrationsverlauf des Mn mit zunehmender Tiefe, der im Rahmen dieser Arbeit bzw. der Arbeit von LAPP (1991) festgestellt wurde, konnte durch DAMM (1992) ebenfalls bestätigt werden.

Wesentlich höhere Mobilisierungsraten wiesen im Untersuchungsgebiet die Elemente Zn, Cd, Pb und Cu auf

Beim Element Zn konnten in den oberen Sedimentschichten bei den Kernen 120 und 12b Mobilitäten zwischen 68 - 75 % gefunden werden. Mit zunehmender Tiefe sank die Mobilisierbarkeit auf ca. 55 % ab. Bei Transekt 23 konnten an Kern 230 und 23b tendentiell die gleichen Verläufe festgestellt werden, die Mobilitäten im oberen Sedimentbereich lagen jedoch um ca. 15 % höher. Die Ergebnisse von BRÜGMANN UND LANGE, (1990) bestätigen diese Aussagen für die Mecklenburger Bucht, das Arkona-Becken, das Bornholm Becken sowie die Gotland See.

Beim Cadmium konnten an Transekt 12 bei Kern 120 mit der Tiefe schwankende Mobilisierbarkeiten gefunden werden, die sich im Bereich von 67 - 65 % bewegten. In 30 cm Tiefe wurden sogar 91 % als mobiliserbarer Anteil festgestellt. Die Ergebnisse der Extraktionsversuche lieferten für Kern 12b mit der Tiefe schwankende Werte zwischen 50 -72 %. Bei Kern 230 wurden mobilisierbare Anteile zwischen 69 - 85 % ermittelt. Für den Kern 23b wurden in der obersten Sedimentschicht (1 cm) Mobilisierungsraten von 55,6 % gemessen, diese stiegen bis 10 cm Tiefe auf 97,8 % an. In 20 cm Tiefe wurden wiederum Anteile von 51,9 % gemessen.

Für die Station 120 geben BRÜGMANN UND LANGE (1990) extrahierbare Anteile von < 50% an. Im Arkona- und Bornholm-Becken wurden hingegen mobilisierbare Anteile an Cd gefunden, die mit den Ergebnissen der Stationen dieser Arbeit gut vergleichbar sind. An einer Station in der Gotland See fanden die Autoren für Cd nahezu vollständige Mobilisierung durch eine HCl-Extraktion.

Das Element Pb konnte für die Stationen 120, 12b und 230 übereinstimmend mit den höchsten Mobilisierbarkeitswerten ermittelt werden. Diese bewegten sich im Bereich von 90 - 97 % in den oberen Bereichen der Kerne 120 und 12b sowie 230. Diese Tendenz setzte sich dann bis in die Tiefenbereiche fort. Dabei gingen die mobilisierbaren Anteile zurück, stellten jedoch den Hauptanteil dar.

Diese Ergebnisse werden von BRÜGMANN UND LANGE (1990) für Stationen des Arkonaund Bornholm-Beckens bestätigt, bei denen die Mobilisierbarkeit auch in tieferen Schichten über 90 % lag. Die Station 12 der Mecklenburger Bucht liegt ebenfalls in diesem Bereich. Für die Gotland-See wurden dagegen Mobilisierbarkeiten gefunden, die um ca. 50 % lagen. In den Boddengewässern konnten LEIPE et al. (1989) für die überwiegende Zahl der untersuchten Sedimente Mobilisierbarkeiten bei Pb, bis in tiefere Bereiche von 30 cm, von > 90 % feststellen.

Beim Cu konnten im Hinblick auf die Mobilisierbarkeiten an den Kernen 120 und 12b Anteile im oberen Sedimentbereich zwischen 58 - 66 % festgestellt werden. Mit zunehmender Tiefe ist die Hauptfraktion jedoch residual. Bei Kern 230 liegen die höchsten Mobilisierbarkeitsanteile im Bereich von 1 - 5 cm mit ca. 74 %. Mit der Tiefe sinken die Anteile auf ca. 65 %. Ab 30 cm Tiefe ist auch hier der Hauptanteil mit 0.5 M HCl nicht mobilisierbar. Bei Kern 23b konnten durchgehend mobilisierbare Anteile zwischen 55 - 65 % gefunden werden. Im oberen Bereich treten dabei mit 60 - 65 % die höchsten mobilen Anteile auf. Im Vergleich mit BRUGMANN UND LANGE (1990) kann eine gute Übereinstimmung zu anderen Gebieten der Ostsee gefunden werden.

Höhere Mobilisierbarkeitsanteile von Cu in Sedimenten wurden von LEIPE et al., (1989) in den Boddenbereichen gefunden. In den Oberflächensedimenten des Achterwassers lag der mobile Anteil bei 85 %, im Peenestrom bei 85 % und im Oderhaff bei 83 %.

Wie sich aus den erhaltenen Ergebnissen abzeichnet, müssen die betrachteten Elemente in zwei Gruppen eingeteilt werden. Dies sind zum einen die chemisch stabil gebundenen Elemente Fe, Al, Co und Ni sowie meist auch das Mn. Diese Elemente zeigen trotz Einwirkung von 0.5 M HCl nur geringe Mobilisierungstendenzen. Zum anderen gibt es die mit 0.5 M HCl mobilisierbaren Elemente, wie das Zn, Cd, Pb und Cu. Die gut mobilisierbaren Metalle sind im Hinblick auf ihre Bindungsanteile nach BRUGMANN UND LANGE (1990) meist als Carbonate, Hydroxide und Oxide oder organisch komplexierte Verbindungen einzuteilen. Eine gleiche Einschätzung wird von LEIPE et al., (1989) vorgenommen. Danach hat die organische Substanz für die Geochemie eine große Bedeutung. Sich daraus ableitende organisch – adsorptive Bindungen sind wichtige Einflußgrößen auf die Mobilität von Cu, Pb und Zn.

5.4.2 Normierte Schwermetalltiefenprofile

5.4.2.1 Vergleich der Normierungsparameter

Eine Normierung von Schwermetallgehalten auf geogene Metalle ist heute eine wichtige Maßnahme zur Schaffung von vergleichbaren Datensätzen und zur Unterscheidung zwischen geogenen und anthropogenen Einträgen in ein Ökoystem.

Dabei sind Normierungen schon seit längerem Gegenstand unterschiedlicher Untersuchungen (PERTTILÄ UND BRÜGMANN, 1992 u.a.).

Die Normierung bewirkt einen Ausgleich der natürlichen Metallschwankungen im Sediment, die durch die Mineralogie bedingt sind. Dabei sind die Gehalte an Li im Sediment zum Teil unregelmäßig, was mit sturm- oder strömungsbedingten Turbulenzen und einer damit einhergehenden Korngrößensortierung erklärbar ist. Da das Li jedoch geogen geprägt ist, kann eine Normierung trotzdem erfolgen. Das Element Fe ist auch ein geogenes Element. Tonminerale können auch Träger von Eisen sein. Jedoch nimmt das Eisen in Form von Hydroxiden an geochemischen Umwandlungen teil (z.B. Pyritbildung). Durch redoxchemische Verschiebungen können sich ferner die Fe-Konzentrationen im Sediment verändern.

Das Al kann ebenfalls als Normierungselement verwendet werden, da es in den Silikaten Hauptbestandteil ist (Alumosilikate). Dabei ist auch das Al als konservatives Element zu sehen. Da Alumosilikate als natürliche Ionenaustauscher wirken, besteht ein direkter Zusammenhang zwischen Alumosilikaten und Schwermetallen. Das Al ist jedoch auch wesentlicher Bestandteil von Gerüstsilikaten, wie den Feldspäten. Diese sind jedoch keine Träger von Schwermetallen. Das bedeutet, daß eine Normierung auf Al zwar möglich, jedoch an die Kenntnis der Mineralogie des jeweiligen Seegebietes gebunden ist, da in Regionen mit hohem Anteil an Feldspäten eine starke Variabilität des Al auftreten kann, jedoch mit dem Schwermetalleintrag in keinem Zusammenhang steht. Vom glazial geprägten Seegebiet der Ostsee weiß man, daß die Feldspatanteile regional sehr hoch sein können.

Der organische Kohlenstoff (POC) kann als Normierungsparameter überall dort verwendet werden, wo z.B. durch sequentielle Extraktionen ein signifikanter Zusammenhang zwischen den Schwermetallgehalten und der organischen Substanz festgestellt wurde. Dabei ist zu beachten, daß der organische Kohlenstoff nicht als konservativ einzustufen ist, da er dem diagenetischen Abbau unterliegt und selbst anthropogen beeinflußt sein kann. Eine Normierung auf das Element Li ist von Vorteil, da das Li nicht an biogeochemischen Stoffkreisläufen teilnimmt und anthropogen kaum in relevanten Anteilen eingebracht wird. Man spricht deshalb von einem konservativen Element. Das Lithium vertritt z.B. das Mg in oktaedrischen Schichten von Tonmineralen. Dadurch kann Li auch als Indikator für Tonminerale herangezogen werden.

Zur Normierung der Schwermetallgehalte wurde das Element Li verwendet. Weiterhin wurde zusätzlich ein Vergleich der Normierungselemente Li, Fe, Al und dem organischen Kohlenstoff vorgenommen. Dabei zeigte sich für den Untersuchungsbereich der Lübeckerund Mecklenburger Bucht eine gute Vergleichbarkeit der einzelnen Parameter. Ein weiterer nicht untersuchter Parameter ist der Korngrößenanteil < 2 μ m (Tonfraktion).

Als repräsentatives Beispiel werden die mit den Parametern korrellierten Elemente Zn und Pb des Kerns von Station 12b dargestellt.

Abb. 49 Die Elemente Zn und Pb im Vergleich der Normierungsparameter bei Kern 12b

Wie sich aus der graphischen Darstellung ableiten läßt, sind zwischen allen Korrelationsparametern gute Vergleichbarkeiten vorhanden. Dies wird nachfolgend exemplarisch am Element Zink dargestellt. Ein wesentlicher Grund für diese Erscheinung sind gleiche geologische und sedimentologische Bedingungen im Untersuchungsgebiet. Die Ablagerungsbedingungen in den feinkörnigen Bereichen dieses Beckens sind gleich. Bei Normierungen ist generell zu beachten, daß diagenetische Einflüsse trotzdem auf die Konzentrationen wirken können. Aus langjährigen Untersuchungen weiß man, daß die anthropogenen Einflüsse sich im oberen Sedimentbereich mit deutlich zunehmenden Peaks dokumentieren (BRÜGMANN, 1988).

Abb. 50 - 52 Korrelationsdiagramme der normierten Schwermetallgehalte am Beispiel des Elementes Zink aus dem Kern 120

Da bei den Elementen Zn, Pb, Cu, Cd in allen untersuchten Kernen vergleichbare Korrelationskoeffizienten gefunden wurden, kann man davon ausgehen, daß im Untersuchungsgebiet sowohl das Element Li, als auch Fe und Al als Normierungsparameter verwendbar sind.

Trotz der guten Korrelation des organischen Kohlenstoffes sollte dieser vornehmlich zur Korrelation mit Metallgehalten (Hg, Cd, Cu) in frisch sedimentierten Oberflächenschichten verwendet werden, da diagenetische Umwandlungsreaktionen diesen Parameter besonders stark beeinflussen. Die große Menge an organischer Substanz im Untersuchungsgebiet läßt jedoch einen direkten Einfluß der Diagenese durch die im Sediment vorhandene Menge an C nicht erkennen.

5.4.2.2 Li-normierte Schwermetalltiefenprofile

Die Verteilung der Schwermetallkonzentrationen wurde an ausgewählten Stationen des Untersuchungsgebietes gemessen. Dabei wurden je Profilschnitt 2 Stationen beprobt.

Die Daten aus dem Totalaufschluß wurden auf das Element Lithium normiert (LORING UND RANTALA, 1992), (LORING UND WINDOM, 1994) um eine Unterscheidung zwischen geogenen Backgroundwerten und anthropogenen Einflüssen zu ermöglichen.

Wie aus den Abbildungen ersichtlich wird, weisen die Tiefenverläufe von Li bei den Kernen 120, 12b und 230, ähnlich denen von Fe und Al, keinen gleichmäßigen Verlauf auf. So wurden bei Kern 120 in der Li-Fraktion im oberen Sedimentbereich (0-14 cm) größere Schwankungen beobachtet. Diese konnten auch bei der Ton-Fraktion und dem C-org. Gehalt bestätigt werden. Größere Schwankungen waren auch bei den Stationen 12b und 23 o festzustellen. Dies kann als Beleg dafür angesehen werden, daß der oberste Sedimentbereich (0-14 cm) einer größeren Dynamik unterliegt. Es kann angenommen werden, daß dieser Sedimentbereich durch äußere Einwirkungen gewissen Umlagerungseinflüssen ausgesetzt, bei denen korngrößenbedingte Fraktionierungen aufgetreten sein können. Als ein weiterer Beleg dafür können die Wassergehalte im Sediment gesehen werden. Diese erreichten ebenfalls in der Tiefe um 14 cm konstante Gehalte. Da es sich beim Li jedoch nicht um ein anthropogen geprägtes Element handelt, ist eine Normierung möglich. Bei Kern 23b konnten zunächst ansteigende Gradienten festgestellt werden. Diese können jedoch mit der in der Tiefe um 6cm vorliegenden Schlickphase begründet werden. Dieser Kernbereich ist nach den Ergebnissen der Analysen reich an C-org, Fe, Al sowie den anthropogenen Elementen. Da das Li hier ebenfalls den geogenen Anteil an der Tonfraktion darstellt, kann eine Normierung durchgeführt werden.

Im Ergebnis zeigten sich an allen untersuchten Kernen der Mecklenburger- und Lübecker Bucht deutliche Erhöhungen in den Konzentrationen der Metalle Zn, Cd, Cu, Pb im oberen Sedimentbereich. Derartige Ergebnisse wurden auch in Arbeiten von BRÜGMANN UND LANGE (1990), DAMM (1992) u.a. festgestellt.

Die konservativen Elemente Al, Li und Fe zeigten über den gesamten Tiefenverlauf relativ gleichmäßige Konzentrationsbilder. Beim Element Mn konnte eine Zunahme der Gehalte mit der Tiefe festgestellt werden.

Die Ergebnisse der geochemischen Analytik zeigten weiterhin ein sehr unterschiedliches Bild in der Belastungssituation der einzelnen Stationen. So wies der Transekt 23 eine grundsätzlich höhere Schwermetallbelastung auf als Transekt 12.

Gleichfalls ergeben sich Unterschiede innerhalb des Transektes 23. So zeigte sich eine teilweise deutliche Abnahme der Konzentrationen der Schwermetalle an Station 23b im Vergleich zu Station 23o, bedingt durch unterschiedliche Hauptfraktionen des Sedimentes. So weisen die Kerne 120 und 12b sowie 230 einen deutlichen Schlickcharakter auf, wohingegen der Kern 23b als schlickiger Sand mit der Tendenz zum Sand einzustufen ist.

In den Abbildungen 53 - 56 werden diese Aussagen graphisch untermauert. Dabei werden die Tiefenprofile der Elemente Fe, Al, Co, Ni, Mn, Pb, Cu, Zn, Cd und Cr, die auf das Li normiert wurden, dargestellt.

Abb. 53 Li-normierte Profile der Station 120 (sand. Schlick) September 1993

Abb. 54 Li-normierte Profile der Station 12b (Schlick) September 1993

84

Abb. 55 Li-normierte Profile der Station 230 (Schlick) September 1993

Abb. 56 Li-normierte Profile der Station 23b (schlickiger Sand) September 1993

86

5.4.2.2.1 Anreicherungsfaktoren der Schwermetalle

Die Anreicherungsfaktoren (AF) für Schadstoffe geben den Grad einer eingetragenen Kontamination an. Sie werden als Quotient aus den gemessenen Gehalten und dem Backgroundwert für die jeweilige Region ermittelt.

Der Anreicherungsfaktor ist nach KERSTEN, (1989):

AF = [Me-Gehalt / Li] / [Me-Background / Li vom Background]

Tab.	15	Anreicherungsfaktoren' von Ni, Co und Cr an Kernen des Un-
		tersuchungsgebietes im Vergleich

Element	Kern 120	Kern 12b	Kern 230	Kern 23b	Damm, (1992) MBB**	Damm, (1992) AB***
Nickel						
lcm	-	1,1	1,1	1,6	1,0	1,2 - 1,9
5 cm	1,1	1,0	1,1	1,7	1,5	1,1 - 1,2
10 cm	1,1	1,0	1,1	2,2	1,5	1,0 - 1,5
20 cm	1,0	1,2	1,0	1,0	1,4	1,1 - 1,1
30 cm	1,1	1,0	1,1	-	1,4	1,2 - 1,1
40 cm	1,0		1,1	-	1,2	1,0 - 1,0
Cobalt						
1 cm	-	1,0	0,8	0,9	1,0	1,3 - 1,6
5 cm	1,0	1,0	0,9	0,7	1,1	1,4 - 1,2
10 cm	1,2	1,1	0,9	0,8	1,1	1,2 - 1,1
20 cm	1,1	1,1	1,0	1,0	1,0	1,1 - 1,0
30 cm	1,1	1,0	0,9	-	1,1	1,1 - 1,4
40 cm	1,0	-	0,9	-	1,0	1,1 - 0,9
Chrom						
1 cm	-	1,0	1,0	0,9	-	-
5 cm	1,0	1,0	1,0	0,7	-	-
10 cm	1,0	0,9	1,0	0,7	-	-
20 cm	1,1	1,1	1,0	1,0	-	-
30 cm	1,1	1,0	0,9	-	-	
40 cm	1,0	-	1,0	-	-	

Element	Kern 120	Kern 12b	Kern 230	Kern 23b	DAMM, (1992) MBB**	DAMM, (1992) AB***
Zink 1 cm 5 cm 10 cm 20 cm 30 cm 40 cm	- 2,2 2,6 1,1 1,1 1,1 1,0	1,9 2,3 2,0 1,1 1,0	2,9 3,6 5,1 1,8 1,3 1,0	3,1 1,6 0,8 1,0 -	2,2 2,0 1,0 0,7 0,8 0,9	2,4 - 2,7 2,2 - 2,8 2,3 - 2,5 1,5 - 1,1 1,0 - 0,9 1,0 - 0,9
<i>Cadmium</i> 1 cm 5 cm 10 cm 20 cm 30 cm 40 cm	4,6 4,0 1,1 0,8 1,0	6,5 7,0 4,7 2,5 1,0	6,8 7,9 8,9 2,9 1,8 0,8	5,5 2,1 1,2 1,0 -	4,0 4,0 3,1 2,9 2,7 3,4	5,6 - 4,9 6,7 - 3,6 5,3 - 3,9 4,3 - 3,8 3,6 - 3,9 3,4 - 2,2
<i>Kupfer</i> 1 cm 5 cm 10 cm 20 cm 30 cm 40 cm	- 1,7 1,5 1,1 1,1 1,0	1,7 1,7 1,4 1,2 1,0	1,9 2,0 2,0 1,1 1,0 1,0	8,4 5,7 3,9 1,0	1,4 1,3 1,4 1,2 1,1 0,9	1,6 - 1,5 1,5 - 1,5 1,6 - 1,4 1,3 - 0,8 1,2 - 0,7 1,0 - 0,6
<i>Blei</i> 1 cm 5 cm 10 cm 20 cm 30 cm 40 cm	- 5,6 5,8 1,8 1,3 1,0	5,5 5,7 4,5 2,0 1,0	4,7 5,5 7,5 2,6 1,4 1,1	2,2 1,1 0,5 1,0 -	5,3 4,5 2,5 1,6 0,8 1,0	6,9 - 5,7 5,9 - 6,1 7,0 - 5,1 4,2 - 1,8 2,5 - 1,5 0,0 - 1,1

Tab.16Anreicherungsfaktoren* von Zn, Cd, Cu und Blei an Kernen des
Untersuchungsgebietes im Vergleich

^{*} Backgroundwert aus 50 cm Tiefe,

** MBB - Mecklenburger Bucht

*** AB - Arkona Becken

Es zeigt sich, daß im Sediment des Untersuchungsgebietes teilweise beträchtliche Anreicherungsfaktoren der Schwermetalle auftreten. Zum Vergleich wurden Ergebnisse der Berechnungen von DAMM (1992) aus der Mecklenburger Bucht und dem Arkona-Becken herangezogen.

Im Vergleich der Daten wird deutlich, daß innerhalb des Untersuchungsgebietes bei den Stationen 120, 12b, 230 und 23b im Hinblick auf die Elemente Ni, Co und Cr eine gute Übereinstimmung besteht. Die berechneten Werte entsprechen den Angaben von DAMM (1992) für diese Region. Auch die herangezogenen Daten aus dem entfernter liegenden Arkona-Becken liegen für die Elemente Ni und Co in der gleichen Größenordnung.

Bei den Elementen Zn, Cd, Cu und Pb hingegen traten deutliche Unterschiede auf. So zeigt sich, daß bei Zn die Anreicherungsfaktoren bei den Stationen 120 und 12b zwischen 1,0 bis max. 2,6 variieren. Die Stationen 230 und 23b zeigten dagegen Werte zwischen 1,0 - 5,1 und lagen damit teilweise beträchtlich über den Werten des Transektes 12. Die von DAMM (1992) berechneten Werte, sowohl für die Mecklenburger Bucht als auch für das Arkona-Becken liegen in guter Vergleichbarkeit zu den Anreicherungsfaktoren des Transktes 12.

Beim Element Cadmium zeigte sich eine relativ gleichbleibende Verteilung der Elementanreicherung innerhalb beider Transekte. Lediglich bei Station 120 liegen die Werte geringer. SCHOER (1982) fand in der Deutschen Bucht eine Anreicherung bei Cd um den Faktor 20 und beim Zn um den Faktor 7.

Die Anreicherungsfaktoren des Elementes Kupfer stimmen im wesentlichen bei den Stationen 120, 12b und 230 überein. Station 23b dagegen wies Werte auf, die teilweise um das vierfache über denen der anderen Stationen liegen. Die Werte von DAMM (1992) liegen für den betrachteten Bereich in der Größenordnung der Stationen 120, 12b und 230.

Für das Element Blei wurden bei den Stationen 120, 12b und 230 übereinstimmend Anreicherungsfaktoren gefunden, die im Bereich von 1,0 - 5,5 liegen, bei 230 in 10 cm Tiefe sogar bei 7,5. SCHOER (1982) berichtet von Anreicherungen um den Faktor 10. Berechnete Vergleichsdaten entsprechen diesem Bild. Die Bleianreicherung von Station 230 (10 cm) wurde hier im Arkona-Becken in gleicher Tiefe wiedergefunden. Vergleicht man die Bleigehalte der Stationen, so nimmt die Station 23b eine Sonderstellung ein, da die Faktoren der Anreicherung gerade im oberen Sedimentbereich teilweise 50 % der Anreicherung an den übrigen Stationen entsprechen.

5.4.3 Akkumulationsraten von Schwermetallen

Die Akkumulationsraten von Schadstoffen in Sedimenten sind ein Indiz für anthropogene Anreicherungen in Sedimenten.

Die Berechnung erfolgt nach der Gleichung (LAPP UND BALZER, 1993):

Akk.rate = $(1-f) \times D_t \times S \times C$

Dabei haben die Faktoren folgende Bedeutung:

f - Porosität

D_t - Trockendichte

S - Sedimentationsrate

C - mittl. Metallgehalt

Die Porositätswerte wurden von KITLAR, (1994) bestimmt. Als Wert für die Trockendichte wird der Wert von 2.54 g cm⁻³ verwendet (SUESS UND ERLENKEUSER, 1975). Sedimentationsraten wurden den Arbeiten von BRÜGMANN UND LANGE (1983) und MÜLLER et al. (1980) entnommen.

Zum Vergleich wurden Sedimentationsraten für die Kieler Bucht und das Bornholm-Becken (SUESS UND ERLENKEUSER, 1975) dargestellt.

 Tab.
 17
 Sedimentationsraten im Untersuchungsgebiet und Vergleichsdaten

Autoren / Seegebiet	Methode	Sedimentationsrate
BRÜGMANN und LANGE (1983) Lübecker Bucht	¹⁴ C - Datierung	1,2 mm a ⁻¹
MÜLLER et al. (1980) Lübecker Bucht	²¹⁰ Pb -Datierung	1,6 mm a ⁻¹
SUESS und ERLENKEUSER (1975) Kieler Bucht Bornholm-Becken	¹⁴ C -Datierung	$1,4 \text{ mm a}^{-1}$ 2,2 - 3,3 mm a ⁻¹

Es muß jedoch beachtet werden, daß durch die zunehmende Eutrophierung der Ostsee die Sedimentationsraten in den letzten 50 Jahren angestiegen sind (LAPP UND BALZER, 1993). Verschiedene Untersuchungen durch ²¹⁰Pb- Datierungen sowie ¹⁴C-Datierungen belegen dies (BALZER et al., 1987), (WEFER UND WEBER, 1987) u.a.

In den Berechnungen der Akkumulationsraten sind Bereiche des Sedimentes nicht berücksichtigt LAPP (1991) die entweder durch Frühdiagenese beeinflußt werden (oberster cm des Sedimentes) bzw. der "Übergangsbereich" zwischen industriell beeinflußten und präindustriellen Bereichen.

Station	n*	C-org.	Fe	Al	Mn	Со	Ni	Рь	Cu	Cd	Zn
präindustriell g kg ⁻¹			g kg ⁻¹					mg kg ⁻¹			
12o	9	41,8	29,36	38,76	453,47	14,63	25,91	18,31	18,11	0,11	70,39
12b	8	37,4	32,38	44,92	425,91	15,62	28,22	16,40	19,25	0,12	75,5
23o	13	39,7	30,07	46,85	492,1	16,81	29,53	36,72	25,9	0,32	89,37
postindu	postindustriell g kg ⁻¹						mg kg ⁻¹				
12o	6	44,1	27,67	39,53	265,72	17,03	30,6	69,87	30,9	0,63	175,7
12b	7	44,5	29,11	44,77	242,31	18,93	33,41	89,9	33,11	0,69	191,1
23o	8	50,3	31,53	45,65	280,41	16,23	33,41	208,0	51,55	1,94	368,2

Tab.18Mittlere Konzentrationen im Sediment

*Anzahl der zur Berechnung herangezogenen Werte

Tab.19Akkumulationsraten im Sediment

Station	Sed. Rate* mma- ¹	Po- ros.	C- org.	Fe	Al	Mn	Co	Ni	Pb	Cu	Cd	Zn
präindu	ustriell			g m ⁻² a ⁻¹				r	ng m ⁻² a	4		
12o	1,4	0,65	52	36,5	48,2	564,4	18,2	32,3	22,8	22,5	0,14	87,6
12b	1,4	0,68	43	36,9	51,1	484,7	17,8	32,1	18,7	21,9	0,14	85,9
23o	1,4	0,66	48	36,4	56,6	594,9	20,3	35,7	44,4	31,3	0,39	108,1
postindustriell g m ⁻² a ⁻¹							r	ng m ⁻² a	1			
12o	1,4	0,65	55	34,4	49,2	330,7	21,2	38,1	87,0	11,0	0,17	218,7
12b	1,4	0,68	51	33,1	50,9	275,7	21,5	38,0	102,3	37,7	0,8	217,5
230	1,4	0,66	61	38,1	55,2	339,0	19,6	40,4	251,5	62,3	2,4	445,2

* Zur Berechnung wurde aus den Literaturwerten eine mittlere Sedimentationsrate von 1,4 mm a^{-1} gebildet

Zum Vergleich der Akkumulationsraten werden nachfolgend Daten aus der Mecklenburger und Lübecker Bucht sowie anderen Gebieten der Ostsee aus der Literatur herangezogen.

Tab.20Vergleich der Akk.Raten mit Stationen der Kieler Bucht- Präindustrielle (geogene) Werte

Station	C-org. gm ⁻² a ⁻¹	Fe gm ⁻² a ⁻¹	Mn mgm ⁻² a ⁻¹	Co mgm ⁻² a ⁻¹	Ni mgm ⁻² a ⁻¹	Cd mgm ⁻² a ⁻¹	Cu mgm ⁻² a ⁻¹	Pb mgm ⁻² a ⁻¹	Zn mgm ⁻² a ⁻¹
12o (Schlick)	52	36,5	564,4	18,2	32,3	0,14	22,5	22,8	87,6
230 (Schlick)	48	36,4	594,9	20,3	35,7	0,39	31,3	44,4	108,1
Bockniseck 28 m (Schlick) LAPP, (1991)	24	14,3	295	5,7	18	0,16	11	12	39
Dorschmulde 21 m (Schlick) LAPP, (1991)	5,8	5,3	123	1,9	5	0,05	3	4	14

Tab. 21 Vergleich der Akk Raten mit Stationen der Kieler Bucht

- Postindustrielle (anthropogene) Werte

Station	C-org. gm ⁻² a ⁻¹	Fe gm ⁻² a ⁻¹	Mn mgm ⁻² a ⁻¹	Co mgm ⁻² a ⁻¹	Ni mgm ⁻² a ⁻¹	Cd mgm ⁻² a ⁻¹	Cu mgm ⁻² a ⁻¹	Pb mgm ⁻² a ⁻¹	Zn mgm ⁻² a ⁻¹
120 (Schlick)	55	34,4	330,7	21,2	38,1	0,17	11,0	87,0	218,7
230 (Schlick)	61	38,1	339,0	19,6	40,4	2,4	62,3	251,5	445,2
Bockniseck 28 m (Schlick) LAPP (1991)	53	35	542	14	40	1,4	42	81	274
Dorschmulde 21 m (Schlick) LAPP (1991)	33	20	188	6,5	21	0,42	22	49	125
Bockniseck 20 m (Schlicksand) LAPP (1991)	7,9	9,5	186	3,7	10	0,26	9	26	56

Beim Vergleich der Akkumulationsraten der Stationen 120, 12b und 230 wird deutlich, daß der Belastungsgrad innerhalb des Untersuchungsgebietes unterschiedlich ist.

So zeigt sich, daß die geogenen Werte der Stationen 120, 12b und 230 in guter Übereinstimmung liegen. Die Station 230 weist trotzdem eine Tendenz zu höheren Backgroundwerten auf.

Bei den anthropogen belasteten höheren Sedimentschichten wird deutlich, daß die Elemente Pb, Cu, Cd und Zn in deutlich höheren Konzentrationen vorliegen. Innerhalb dieser Sedimentschichten zeigten sich Unterschiede zwischen den Stationen aus Schnitt 12 (Mecklenburger Bucht) und Schnitt 23 (Lübecker Bucht). Die Gehalte der Station 230 waren zum Teil erheblich höher als bei Station 120.

Bei Vergleich der Akkumulationsraten von Lübecker-, Mecklenburger- und Kieler Bucht zeigte sich z.B. bei Mangan im geogenen Bereich eine 2 - 5 fach höhere Akkumulationsrate bei den Stationen der Lübecker- und Mecklenburger Bucht. Insgesamt liegen die Akkumulationsraten im Bereich die Kieler Bucht niedriger als in der Lübecker und Mecklenburger Bucht.

Für den anthropogenen Sedimentbereich konnte im Vergleich eine gute Übereinstimmung zwischen allen betrachteten Bereichen festgestellt werden. Es traten regional zwar Unterschiede auf, die jedoch auf unterschiedliche Einträge zurückführbar sind.

Diese Ergebnisse unterstreichen, daß in der Lübecker und Mecklenburger Bucht im Bereich des zentralen Beckens mit Schlicksediment die vergleichsweise höchsten Akkumulationsraten wiederzufinden sind. Dies ist sowohl auf die anthropogene Belastung zurückzuführen, die in diesem Bereich hoch ist, und andererseits auf den Schlickcharakter des Sedimentes. Die Übergangsbereiche und küstennahen Sandbereiche haben demnach als Akkumulationsgebiete eine weit geringere Bedeutung.

Zusammenfassung der Ergebnisse aus den Abschn. 5.

Aus dem Untersuchungsgebiet wurden die Kerne 120, 12b, 230 und 23b untersucht. Bei der **Korngrößenanalytik** konnte festgestellt werden, daß die Kerne 120, 12b und 230 hauptsächlich aus einer Ton- und Siltfraktion bestanden. Sand nahm besonders bei den Kernen 12b und 230 eine untergeordnete Bedeutung ein. Bei Station 23b überwog die Sandfraktion deutlich.

Die Schwefel- und Kohlenstoffanalytik zeigte, daß im oberen Sedimentbereich Gehalte an C um 5 % lagen, die mit zunehmender Tiefe abnahmen, was auf diagenetische Einflüsse hinweist. Beim Schwefel wurden mit der Tiefe zunehmende Gehalte gemessen.

Zur Abschätzung einer **Mobilisierbarkeit** wurden **Extraktionsexperimente** mit 0,5 M HCl duchgeführt. Im Ergebnis dieser konnte für die Elemente Zn, Cd, Pb und Cu eine sehr hohe Mobilisierbarkeit festgestellt werden. Während sich dieses Bild für die Elemente Zn und Cu im obersten Bereich (bis 10 cm Tiefe) des Sediments zeigte, konnten bei Cd und Pb die überwiegenden Anteile bis in 40 cm nachgewiesen werden.

Die Elemente Al, Fe, Co und Ni wiesen hohe residuale Anteile auf. Diese lagen bei Al zwischen 91 - 96 %. Beim Fe konnten Anteile von 79 - 87 % als stabil gebunden festgestellt werden. Die Mobilisierbarkeitswerte von Co wurden bei Kern 120 und Kern 12b zwischen 28 - 32 % gefunden. Das entspricht einem residualen Anteil, der zwischen 68 - 72 % liegt. Geringere Remobilisierungsanteile beim Element Co konnten bei Transekt 23 an den Kernen 230 und 23b festgestellt werden. So lagen hier die mobilen Anteile zwischen 8 -11 % an Kern 230 (residual: 87 - 92 %) und an Kern 23b 11 - 27 % (residual: 72 - 89 %). Die Mobilität des Elementes Nickel entspricht einer nahezu gleichmäßigen Situation im Vergleich der Stationen. Die mobilisierbaren Anteile lagen im Bereich von 20 - 40 %.

Zur Beschreibung des anthropogenen Einflusses wurden die auf Li - normierten Schwermetalltiefenprofile aufgenommen. Dabei zeigte sich, daß die Elemente Pb, Cu, Zn und Cd, die bekanntermaßen anthropogener Prägung sind, im oberen Sedimentbereich (bis ca. 15 - 20 cm Tiefe) deutlich höhere Konzentration aufweisen als im tieferliegenden (Background-) Bereich.

Zum Vergleich wurden die Anreicherungsfaktoren für die Elemente Ni, Co, Cr, Zn, Cd, Cu und Pb ermittelt. Im Vergleich der Daten wird deutlich, daß innerhalb des Untersuchungsgebietes bei den Stationen 120, 12b, 230 und 23b im Hinblick auf die Elemente Ni, Co und Cr eine gute Übereinstimmung besteht.

Bei den Elementen Zn, Cd, Cu und Pb hingegen traten deutliche Unterschiede auf. So zeigt sich, daß bei Zn die Anreicherungsfaktoren bei 120 und 12b zwischen 1,0 bis max. 2,6 variieren. Die Stationen 230 und 23b zeigten dagegen Werte zwischen 1,0 - 5,1 und lagen damit teilweise beträchtlich über den Werten des Transektes 12.

Beim Element Cadmium zeigte sich eine relativ gleichbleibende Verteilung der Elementanreicherung innerhalb beider Transekte. Lediglich bei Station 120 liegen die Werte geringer.

Die Anreicherungsfaktoren des Elementes Kupfer stimmen im wesentlichen bei den Stationen 120, 12b und 230 überein. Station 23b dagegen wies Werte auf, die teilweise um das vierfache über denen der anderen Stationen liegen.

Für das Element Blei wurden bei den Stationen 120, 12b und 230 übereinstimmend Anreicherungsfaktoren gefunden, die im Bereich von 1,0 - 5,5 liegen, bei 230 in 10 cm Tiefe sogar bei 7,5. Die Bleianreicherung von Station 230 (10 cm) wurde hier im Arkona-Becken in gleicher Tiefe wiedergefunden. Vergleicht man die Bleigehalte der Stationen, so nimmt die Station 23b eine Sonderstellung ein, da die Faktoren der Anreicherung gerade im oberen Sedimentbereich teilweise 50 % der Anreicherung an den übrigen Stationen entsprechen.

Die berechneten Akkumulationsraten für das Untersuchungsgebiet ergeben ebenfalls ein interessantes Bild. Beim Vergleich der Stationen 120, 12b und 230 wird deutlich, daß der Belastungsgrad innerhalb des Untersuchungsgebietes unterschiedlich ist.

So zeigt sich, daß die geogenen Werte der Stationen 120, 12b und 230 in guter Übereinstimmung liegen. Die Station 230 weist trotzdem eine Tendenz zu höheren Backgroundwerten auf.

Bei den anthropogen belasteten höheren Sedimentschichten wird deutlich, daß die Elemente Pb, Cu, Cd und Zn in deutlich höheren Konzentrationen vorliegen. Innerhalb der anthropogen belasteten Sedimentschichten zeigten sich Unterschiede zwischen den Stationen aus Schnitt 12 (Mecklenburger Bucht) und Schnitt 23 (Lübecker Bucht). Die Gehalte der Station 230 waren zum Teil erheblich höher als bei Station 120.

Bei Vergleich der Akkumulationsraten von Lübecker-, Mecklenburger- und Kieler Bucht zeigte sich z.B. bei Mangan im geogenen Bereich eine 2 - 5 fach höhere Akkumulationsrate bei den Stationen der Lübecker- und Mecklenburger Bucht. Insgesamt liegen die Akkumulationsraten im Bereich die Kieler Bucht niedriger als in der Lübecker und Mecklenburger Bucht.

6. Das Porenwasser

6.1 Der gelöste organische Kohlenstoff (DOC)

Zur Beschreibung möglicher Variabilitäten des gelösten organischen Kohlenstoffes im Bereich der Lübecker- und Mecklenburger Bucht wurden jahreszeitlich variierende Beprobungen des Porenwassers durchgeführt.

Im Ergebnis der Analysen konnten Anstiege im Konzentrationsverlauf des DOC mit der Sedimenttiefe sowie saisonale Konzentrationsunterschiede in der obersten Sedimentschicht von 0-1 cm festgestellt werden.

So wurden im obersten Sedimentbereich Porenwasserkonzentrationen festgestellt, die in der Größenordnung von 5 mg C Γ^1 lagen. In den Tiefenbereichen (bis 40 cm) konnten DOC -Gehalte bis 25 mg C Γ^1 gemessen werden. HERNDL ET AL., (1989) fanden DOC - Gehalte im obersten Sedimentbereich bis zu 20 mg C Γ^1 im Golf von Triest. Dieser Wert wurde im September während einer Stagnationsperiode gemessen, die Werte danach fielen auf 5 mg C Γ^1 . Ähnliche Konzentrationsverläufe werden auch in anderen Seegebieten der Erde beschrieben. So wurden in Schlickgebieten des Fly Delta (Papua New Guinea) von ALONGI (1991) DOC Gehalte gemessen, die in einer Größenordnung von 2,9 mg C Γ^1 im obersten Sedimentbereich und 29,5 mg C Γ^1 im tieferen Bereich lagen.

Vom Typ entsprechen die Beprobungsstationen dieser Arbeit dem Schlicksediment. Die gemessenen Daten der Porenwasseruntersuchungen sind in ihrer Interpretation im Zusammenhang mit unterschiedlichen Faktoren zu beurteilen, denn in Küstengewässern erreicht der Hauptteil der pelagischen Primärprodukte den Meeresboden (SMETACEK, 1984). Benthische Umwandlungs- und Mineralisierungsprozesse spielen deshalb eine wesentliche Rolle in der Nährstoffproduktion. Man spricht deshalb von einer Kopplung zwischen pelagischen und benthischen Prozessen in küstennahen marinen Ökosystemen (HARGRAVE, 1980), (NIXON et al., 1980), (ZEITZSCHEL, 1980). Für die benthische Nährstoffbildung sind dabei Bakterien und ihre Aktivität von besonderer Bedeutung (MEYER-REIL, 1986). Die bakterielle Aktivität ist dabei an die bakterielle Biomasse und die Bakterienarten gebunden. Ein wichtiger Zusammenhang zwischen Aktivität der benthischen Bakterienmasse, der Jahreszeit und der Sedimenttemperatur konnte dabei von verschiedenen Autoren belegt werden (RUBLEE, *1982*), (De FLAUN UND MAYER, 1983), (MEYER-REIL, 1983 und 1984).

Eine rapide Zunahme des DOC an der Sedimentoberfläche konnte im September festgestellt werden. Diese nahm im Jahresgang zum März hin ab, danach war wiederum ein Anstieg festzustellen. HERNDL ET AL., (1989) führten diese Erscheinung auf eine "Auffüllung des DOC - Pools" durch herabgesunkenes Phytoplankton zurück.

Die Stagnationsperiode im Sommer wird durch eine ausgeprägte Schichtung der Wassersäule charakterisiert. Dabei bilden sich großflächige amorphe Aggregate, die an der Pycnocline akkumulieren (HERNDL UND PEDUZZI, 1988), (HERNDL, 1989).

Die Einbindung anorganischer Partikel führt zu einer Erhöhung der spezifischen Dichte dieser Akkumulate. Dadurch wird ein periodische fortlaufender Sinkvorgang bewirkt, bei dem die Aggregate letztlich zum Sediment gelangen und sich als braune Schicht auf deren Oberfläche ablagern (HERNDL et al., 1989). Diese periodische Anlagerung führt nicht nur zu einer Erhöhung des DOC-Gehaltes in der Oberflächenschicht, sondern auch zu einer Sauerstoffverarmung während der Spätsommerperiode.

Es bilden sich Sauerstoffverarmungszustände sowie Schichtungen aus. Benthische Bakterien zeigen saisonale Fluktuationen und Reaktionen auf solche Einflüsse, die sich in einer Variabilität von Bakterien und dem DOC im Porenwasser widerspiegeln. Im Untersuchungsgebiet der Lübecker- und Mecklenburger Bucht wurde eine Variation in den Porenwasserkonzentrationen der Schicht von 0-1 cm festgestellt. So wurden im September Maxima gefunden, die sich zum Februar verringerten und zum April / Mai wieder anstiegen. Durch die geringe Anzahl der Meßdaten kann jedoch eine Regelmäßigkeit dieser Erscheinungen nicht diskutiert werden.

Zusammenfassung des Abschn. 6.1

Beim gelösten **organischen Kohlenstoff (DOC)** konnten Anstiege im Konzentrationsverlauf mit der Sedimenttiefe sowie saisonale Konzentrationsunterschiede in der obersten Sedimentschicht von 0-1 cm festgestellt werden. So wurden im obersten Sedimentbereich Porenwasserkonzentrationen gefunden, die in der Größenordnung von 5 mg C l⁻¹ lagen. In den Tiefenbereichen (bis 40 cm) konnten DOC Gehalte bis 25 mg C l⁻¹ gemessen werden. Eine rapide Zunahme des DOC an der Sedimentoberfläche konnte im September festgestellt werden. Diese nahm im Jahresgang zum März hin ab, danach war wiederum ein Anstieg festzustellen.

99

6.2 Die Schwermetalle

Das Porenwasser im Untersuchungsgebiet wurde an verschiedenen Stationen zu unterschiedlichen Zeiten beprobt (siehe Tab. 2). Dabei konnten unterschiedliche Konzentrationsprofile gefunden werden. Die Konzentrationen von Fe und Mn stiegen im Porenwasser meist direkt unter der Oberfläche (1cm) an. Dies läßt gerade bei den Schlickstationen eine sehr geringmächtige oxische Sedimentzone erwarten. Diese Konzentrationsverläufe für das Element Co. Bei Element Mn konnten unterschiedliche Tiefenverläufe der Konzentrationen gefunden werden. So wiesen einige Stationen (Schlick) mit zunehmender Tiefe abnehmende Mn-Konzentrationen auf, die Stationen mit Sandschlickanteil jedoch zeigten eine Zunahme der Konzentrationen mit steigender Tiefe. Ähnliche Effekte wurden von LAPP UND BALZER (1993) im Bereich der Kieler Bucht an Sedimenten vom gleichen Typ festgestellt. Vom Konzentrationsverlauf her ähnlich mit Mn und Fe verhielt sich das Element Co.

Bei Cd und Cu sind die Konzentrationsverläufe entgegengesetzt. So weisen Cd und Cu sowie Ni im oxischen Bereich höhere Konzentrationen auf. In tieferliegenden Schichten nehmen diesen jedoch stark ab. Im wesentlichen wurden die Konzentrationsprofile durch ausgebildete Redoxzonen beeinflußt. Dabei unterscheidet man in einen oxischen Bereich, der in der Regel einige Millimeter bis Zentimeter stark an der Sedimentoberfläche ausgebildet ist, einen suboxischen und einen anoxischen Sedimentbereich.

Aus Messungen des Redoxpotentials zeigte sich, daß in Perioden mit Sauerstoffanreicherung im Bodenwasser die oxischen Schichten des Sedimentes besonders deutlich ausgeprägt sind. So wiesen die Stationen im Februar und Mai 1993 oxische Bereiche von über 1cm auf. Der größte oxische Bereich wurde im Februar bei Station 23b (schlickiger Sand) mit einer Mächtigkeit von 4,7 cm gemessen. Die Ergebnisse der Redoxmessungen während der Stagnationsperiode im September 1993 zeigten im Vergleich zum Februar und Mai deutlich geringere Mächtigkeiten der oxischen Zone. Diese lagen zwischen 0,3 - 1,2 cm bei den Schlickstationen und zwischen 1,1 - 1,5 cm bei den küstennäheren Stationen mit schlickigem Sand. Anhand der Redoxprofile läßt sich weiterhin erkennen, daß die Auswirkungen der Stagnationsperiode bis in die Beprobungskampagne im November 1993 hineinreichten. Trotz der Sauerstoffsättigung und der strömungs- und sturmbedingten Turbulenzen wurden wiederum nur geringmächtige oxische Schichten im Sediment festgestellt. Zum Februar 1994 erreichten die oxischen Schichten dem Februar 1993 vergleichbare Tiefen. Eine direkte Auswirkung von Sauerstoffmangelsituationen auf das Redoxgeschehen im Sediment konnte nachgewiesen werden. Es zeigte sich weiterhin, daß das Redoxmillieu nach einer Stagnationsperiode einen längeren Zeitraum benötigt, um sich umzustellen.

Abb. 64

Porenwasserprofile von Kern 120 Sept. 1993

Abb. 65 Porenwasserprofile von Kern 120 Febr. 1994

٨.

Porenwasserprofile von Kern 120 April/Mai 1994

Abb. 67 Porenwasserprofile von Kern 12a April/Mai 1994

Porenwasserprofile von Kern 12b April/Mai 1994

Abb.

Porenwasserprofile von Kern 12c April/Mai 1994

Porenwasserprofile von Kern 230 Febr. 1994

Abb. 73 Porenwasserprofile von Kern 230 April/Mai 1994

Abb. 74 Porenwasserprofile von Kern 23a April/Mai 1994

Abb. 75 Porenwasserprofile von Kern 23b April / Mai 1994

Die Redoxprofile spiegeln sich in den Konzentrationsverläufen der Schwermetalle im Porenwasser unterschiedlich wieder. Es muß jedoch darauf hingewiesen werden, daß die Redoxprofile z.T. nicht von allen Stationen bestimmt worden sind, bzw. die Bestimmungen an Parallelkernen erfolgten, die u.U. aus einer weiteren Probennahme stammten. So können gewisse Unterschiede nicht vermieden werden.

Die höchsten Gehalte von Fe und Mn wurden entsprechend ihrem bekannten Verhalten (LAPP UND BALZER, 1993) in der suboxischen Zone gefunden. An Station 120 wurde im September 1993 ein Mn-Gehalt von max. 3 mg/l gefunden, der Fe-Gehalt lag bei 5 mg/l. Die Segmentierung der Sedimente erfolgte in 1-cm-Schnitten, deshalb kann eine deutliche Heraushebung des Konzentrationsmaximums im suboxischen Bereich nicht erfolgen, da lt. Redoxmessungen der suboxische Konzentrationsbereich bereits bei 0,8 cm begann. Die Grafik in diesem Bereich muß demzufolge als Mittelwert der Konzentrationen angesehen werden. Im Februar 1994, wo die oxische Schicht des Sedimentes bereits deutlicher ausgebildet vorlag, wurden im obersten Sedimentbereich die geringsten Konzentrationen gemessen. Die Maxima lagen in einer Tiefe von 3 - 4 cm. Ein ähnliches Verhalten von Fe und Mn wurde im Profil der Beprobung vom Mai 1994 gefunden.

Bei den Elementen Co und Ni wurden während der Stagnationsperiode (September 1993) im oberflächennahen Sediment ebenfalls die höchsten Konzentrationen gemessen. Dies kann als unmittelbare Folge der Bildung löslicher Verbindungen des Fe und Mn und Freisetzung von Ni aus den Präzipitaten angesehen werden, da Ni in anoxischen Bereichen in größeren

104

Konzentrationen vorliegt, entsprechend dem Co, das sich entsprechend dem Fe und Mn verhält.

Cu und Cd wiesen im Porenwasser der Station 120 ebenfalls die höchsten Konzentrationen im obersten Sedimentbereich (0-2 cm) auf. Diese nimmt mit der Tiefe deutlich ab, da die Elemente Cu und Cd im anoxischen Bereich infolge Sulfidfällung unlöslich sind (LAPP und BALZER, 1993).

Wesentlich geringere Konzentrationen an Mn, aber auch an Eisen wurden bei den Stationen des 23-er Transektes gefunden. So lag die Mn-Konzentration im obersten Sedimentbereich im September 1993 bei 0,4 mg/l. Eisen wurde in einer Konzentration von 2,4 mg/l gemessen. Die Ausbildung von Konzentrationsmaxima direkt unterhalb der Sedimentober-fläche ist jedoch den 12-er Stationen der direkten Mecklenburger Bucht vergleichbar. Der oxidierende Bereich bei Station 230 lag entsprechend der Redoxmessungen bei einer Tiefe von 0- 1,2 cm.

LAPP und BALZER (1993) stellten vergleichbare Konzentrationen im Bereich der Mittleren Eckernförder Bucht, Dorschmulde und Bokniseck fest. Nach der Sedimenttypologie sind die Sedimente der Mecklenburger Bucht, die Schlickcharakter aufweisen, den Stationen der Mittleren Eckernförder Bucht und der Dorschmulde vergleichbar. Hier wurden von LAPP und BALZER (1993) Fe-Konzentrationen zwischen 0,15 - 2,5 mg/l gefunden. Die Mn-Gehalte lagen im Bereich von 0,5 - 2 mg/l. Durch die größere Feinauflösung der beprobten Sedimentschnitte werden die im obersten Bereich ausgeprägten Zonierungen deutlicher hervorgehoben. Auch die Konzentrationsverläufe bei Co und Ni entsprechen den in dieser Arbeit gefundenen Ergebnissen. Eine Reihe anderer Autoren beschrieben die Konzentrationsverläufe von Schwermetallen im Porenwasser in bezug zu den unterschiedlichen Redoxbereichen und dem Sedimenttyp (ALLER, 1980), (ELDERFIELD et al., 1981), (PEDER-SEN, 1985), (GOBEIL et al., 1987), (WILLIAMSON et al., 1994) u.a.. Dabei wird deutlich, daß die im Untersuchungsgebiet festgestellten Profilverläufe auch in guter Übereinstimmung mit diesen Arbeiten liegen.

Im Bereich der Mecklenburger Bucht wurden von DAMM (1992) Untersuchungen am Porenwasser durchgeführt. Für das Element Mn wurden im obersten Sedimentbereich Konzentrationen in einer Größenordnung von 1 mg/l gefunden. Die höchsten Werte in einer Tiefe um 25 cm wurden im Bereich zwischen 1 - 2 mg/l ermittelt. Ein wesentlicher Einflußfaktor auf diese Ergebnisse kann jedoch in der anderen Methode zur Probennahme und Lagerung sowie der Porenwassergewinnung im Labor zu suchen sein. Betrachtet man die Fe-Profile mit Konzentrationen um 2 mg/l und einem wiederum typischen Verlauf, so kann bei diesem eine gute Übereinstimmung festgestellt werden.

Besonders soll an dieser Stelle jedoch auf die unterschiedlichen Gehalte des Porenwassers an Mn und Fe der Stationen des 12-er Transektes im Vergleich zu den Stationen des 23-er Transektes hingewiesen werden. Dabei zeigte sich ein deutlicher Unterschied in den Konzentrationsverläufen, bei denen das Porenwasser der Station 230 lediglich 50 % des Gehaltes im Vergleich zu Station 120 aufwies. Das unterschiedliche Dargebot an mobilisierbarem Mn und auch Fe an den einzelnen Stationen kann als wichtiger Indikator für die beobachteten Konzentrationen im Bodenwasser gewertet werden, die in der Stagnationsperiode im September 1993 gemessen wurden. Bekannt ist weiterhin, daß die Region in der Umgebung von Station 120 besonders ein Fundgebiet von Mn/Fe-Akkumulaten ist.

7. Stofflüsse von Schwermetallen an der Grenzfläche Sediment / bodennahes Wasser

Das Maß der Bioturbation (K_{BIO}) übt einen wesentlichen Einfluß auf die Diffusionskoeffizienten von gelösten Stoffen im Sediment aus. Man spricht von einem effektiven Fluß, der sich nach KITLAR (1991) als D_{eff.} = K_{BIO} x D_s berechnen läßt.

Die Ergebnisse der Bioturbationsuntersuchungen von KITLAR (1994) zeigten unterschiedliche Effekte in den Sedimenten der Stationen. Für obersten Sedimentbereich (0-1) cm wurden geringe K_{BIO} gemessen. Diese lagen im Durchschnitt zwischen 1 - 2. Lediglich in den Kernen 120 und 12c wiesen im April die K_{BIO} Werte zwischen 4-6 auf. Eine weitere Ausnahme bildete die Station 12a im Februar 1993 mit einem K_{BIO} von 10, KITLAR (1991).

Nach den Ergebnissen der Tracer-Experimente läßt sich somit eine Verdoppelung der diffusiven Flüsse erwarten.

Nach LAPP (1991) sind in küstennahen Sedimenten die Aktivitäten von Benthosorganismen und die damit durch die Pumpleistung verursachten höheren Stofflüsse zu beachten. Dies bedeutet, daß in eine Berechnung die effektiven Diffusionskoeffizienten D_{eff} einbezogen werden müssen.

Um den Einfluß der Bioturbation auf die effektiven Flüsse (D_{eff}) zu quantifizieren, wurden Flußberechnungen durchgeführt und auf den Gesamtbereich der Mecklenburger- und Lübecker Bucht hochgerechnet.

Der Fluß läuft dabei über die Grenzschicht Sediment / bodennahes Wasser ab. Redoxprozesse und Bioturbation in diesem Bereich sind von entscheidender Bedeutung. Zur Quantifizierung von Stofflüssen kann nach BERNER (1971) das 1. Fick'sche Gesetz herangezogen werden. In dieser Arbeit wurden die Diffusionskoeffizienten von LI und GREGORY (1974) zugrunde gelegt.

Die Stofflüsse wurden für die Beprobungszeiträume September 1993 (Stagnationsperiode) und Februar 1994 (sauerstoffreiches Tiefenwasser) berechnet

Die Flüsse bei den Schwermetallen zeigten in Abhängigkeit von den betrachteten saisonalen Situationen der Sauerstoffsättigung und -verarmung sehr unterschiedliche Größenordnungen.
Tab. 22	Stofflüsse	der Meta	lle im U	Intersuchungsge	biet

Station	Bepro- bung		ekulare diffusive I [mg x m ⁻² x a ⁻¹]	Flüsse	KBIO		effektive Flüsse [mg x m ⁻² x a ⁻¹]	
		Mn	Fe	Co		Mn	Fe	Co
120	9/93	889,6	1455,9	0,62	2	1779,2	2911,8	1,24
12b	9/93	1672,8	1323,7	0,77	2	3345,6	2647,4	1,54
230	9/93	155,2	558,6	1,10	2	310,4	1117,2	2,20
120	2/94	1,05	5,83	0,07	2	2,1	11,66	0,14
230	2/94	2,09	5,18	0,00025	1	2,09	5,18	0,00025
		Ni	Cu	Cd		Ni	Cu	Cd
120	9/93	1,25	4,85	0,14	2	2,50	9,7	0,28
12b	9/93	1,44	-	0,17	2	2,88	-	0,34
230	9/93	0,91	5,92	0,08	2	1,82	11,84	0,16
120	2/94	0,81	0,035	0,10	2	1,62	0,07	0,20
230	2/94	0,041	1,92	0,01	1	0,041	1,92	0,01

Die unter Einbeziehung der K_{BIO} - Werte (KITLAR, 1994) ermittelten effektiven Flüsse D_{eff} zeigten bei den Elementen Mn und Fe die herausragendsten Unterschiede zwischen den Stationstransekten und Jahreszeiten. Für Mn wurden bei den Stationen 120 und 12b effektiver Fluss von 889,6 mg x m⁻² a⁻¹ und 1672,8 mg x m⁻² x a⁻¹ festgestellt. Dieser lag bei Station 120 im Februar 1994 bei 1,05 mg x m⁻² x a⁻¹, d.h. über das 800-fache geringer. Bei Station 230 wurden im September 1993 lediglich Flüsse in einer Größenordnung von 155,2 mg m⁻² x a⁻¹ berechnet. Mit Zunahme der Sauerstoffgehalte im Februar 1994 lagen diese lediglich noch bei 2,09 mg x m⁻² x a⁻¹. Eine vergleichbare Situation stellte sich beim Element Fe dar (Tab. 22).

Die effektiven Flüsse von Mn lagen während der Stagnationsperiode im September bei den Stationen 120 und 12b bei Werten von 1779,2 mg x m⁻² x a⁻¹ und 3345,6 mg x m⁻² x a⁻¹. Im Februar 1994 erreichten die Flüsse bei Station 120 2,1 mg x m⁻² x a⁻¹. Bei Station 230 konnten während der Stagnationsperiode im September 1993 Mn - Flüsse von 310,4 mg x m⁻² x a⁻¹, die dann im Februar 1994 bei 2,09 mg x m⁻² x a⁻¹ lagen. Auch hier werden die geringeren effektiven Flüsse bei Stationstransekt 23 in der Lübecker Bucht deutlich. Beim Fe konnten an Station 120 und 12b im September 1993 effektive Flüsse von 2911,8 mg x m² x a⁻¹ und 2647,4 mg x m² x a⁻¹ ermittelt werden. Im Februar 1994 konnten an Station 120 lediglich 11,66 mg x m² x a⁻¹ und bei Station 230 von 5,18 mg x m² x a⁻¹ errechnet werden.

Abb. 76 Vergleich der Flüsse von Mn und Fe während der Stagnationsperiode im September 1993

Beim Element Co ist im Vergleich der saisonal unterschiedlichen effektiven Flüsse ein Trend ähnlich den Elementen Fe und Mn festzustellen. Dies kann deutlich durch das diesen Elementen entsprechende Redoxverhalten erklärt werden.

Vergleicht man dies mit den effektiven Flüssen beim Ni, so wird eine weitere Erscheinung deutlich. Saisonal sind, besonders deutlich bei Station 120 zu erkennen, die Flüsse unverändert geblieben. Da Ni ein dem Mn ähnliches Redoxverhalten ausweist, kann man davon ausgehen, daß die höheren Flüsse von Ni während der Stagnationsperiode im September 1993 auf erhöhte Konzentrationsgradienten infolge der Auflösung von Fe - Mn - Präzipitaten im Sediment zurückzuführen sind.

Abb. 77 Vergleich der Flüsse von Co und Ni im Untersuchungsgbiet

Die Elemente Cu und Cd zeigten während der Stagnationsperiode im September 1993 die höchsten effektiven Flüsse im Vergleich zum Februar 1994. Bei diesen Elementen ist ein entgegengesetztes redoxchemisches Verhalten bekannt. Es kann daher angenommen werden, daß auch diese Metalle, wie bereits das Ni in ihrem Stoffkreislauf eng an die Elemente Fe und Mn gebunden sind, da diese durch ihre wesentlich höheren Konzentrationen bei Fällungs- und Auflösungsvorgängen dominieren. So zeigten beispielsweise auch die Ergebnisse von WESTERLUND et al. (1986) einen entgegengesetzten Verlauf.

Abb. 78 Vergleich der Flüsse von Cu und Cd im Untersuchungsgebiet

LAPP und BALZER (1993) stellten beim Vergleich der effektiven Flüsse der Elemente Ni, Cu und Cd der Eckernförder Bucht fest, daß der Fluß von Cd im Vergleich zur Akkumulationsrate höher als der der Elemente Cu und Ni ist. Dies konnte für das Untersuchungsgebiet der Mecklenburger- und Lübecker Bucht bestätigt werden. Einen Überblick gibt nachfolgende Tabelle.

Station	Beprobung		effektive Flüss mg x m ⁻² x a ⁻¹	C	Ak	kumulationsra mg x m ⁻² x a ⁻¹	iten
		Ni	Cu	Cd	Ni	Cu	Cd
120	9/93	2,5	9,7	0,28	38,1	11,0	0,17
12b	9/93	2,88	-	0,34	38,0	37,7	0,80
230	9/93	1,82	11,84	0,16	40,4	62,3	2,4
120	2/94	1,62	0,07	0,20	38,1	11,0	0,17
230	2/94	0,041	1,92	0,01	40,4	62,3	2,4

Tab.	23	Vergleich effektiver	Flüsse von Ni.	Cu und	Cd mit	den A	kkumulationsraten
					~~~		

## Tab.24Stofflüsse der Nährstoffe im Untersuchungsgebiet

Station	Bepro- bung		molekulare di [mmol x	iffusive Flüsse m ⁻² x a ⁻¹ ]		K _{BIO}		effektiv [mmol x	ve Flüsse ; m ⁻² x a ⁻¹ ]	
		Ammon.	Nitrat	Phosphat	Silikat		Ammon.	Nitrat	Phosphat	Silikat
12o	2/94	4,02	1,53	0,025	11,63	2	8,04	3,06	0,05	23,26
230	2/94	0,48	0,24	0,37	20,72	1	0,48	0,24	0,37	20,72
			i in an					disenting stade		
120	4/94	14,5	0,77	0,014	48,2	6	87,0	4,62	0,084	289,2
230	4/94	14,6	0,84	0,15	19,2	2	29,2	1,68	0,3	38,4
23a*	4/94	23,5 2,23		1,0	34,4	2	47,0	4,46	2,0	68,8

* Porosität entspr. Kern 230



Die markierten Kästchen geben den Fluß ins Sediment an.

Die Ergebnisse der Fluss-Berechnungen aus dem Untersuchungsgebiet ergaben zwischen den Bereichen der Mecklenburger Bucht (Zentralbereich) und der Lübecker Bucht unterschiedliche Nährstofflüsse. So wurden an Station 120 Ammonium-Flüsse gemessen, die bei 8,04 mmol x m⁻² x a⁻¹ lagen, Station 230 wies hingegen einen effektiven Fluss von 0,48 mmol x m⁻² x a⁻¹ auf.

Die Konzentrationen an Nitrat waren während der Beprobungen im Bodenwasser größer als in der Schicht 0-1 cm des Porenwassers. Daraus ergeben sich Konzentrationsgradienten, die zu einem Fluß ins Sediment führen. Für das Nitrat konnten an Station 120 im Februar effektive Flüsse von 3,06 mmol x m⁻² x a⁻¹ festgestellt werden. Im April 1994 lagen diese bei 4,62 mmol x m⁻² x a⁻¹. Bei Station 230 in der Lübecker Bucht konnten Flüsse von 0,24 mmol x m⁻² x a⁻¹ im Februar 1994 sowie von 1,68 mmol x m⁻² x a⁻¹ gefunden werden. Es zeigte sich somit, daß die Flüsse zwischen Februar und April 1994 angestiegen sind. Ein wesentlicher Grund dafür sind z.B. Bioturbationseffekte, die mit einem K_{BIO} von 6 für Station 120 im April 1994 vorlagen. Die Flüsse von Phosphat wiesen mit 0,05 mmol x m⁻² x a⁻¹ bei Station 120 und 0,37 mmol x m⁻² x a⁻¹ bei Station 230 ein entgegengesetztes Bild auf. Die Flüsse von Silikat lagen an beiden Stationen in der gleichen Größenordnung.



Abb. 79 Flüsse von Ammonium und Silikat im Untersuchungsgebiet



#### Abb. 80 Flüsse von Nitrat und Phosphat im Untersuchungsgebiet

Nährstoff-Profile von der Stagnationsperiode im September 1993 konnten nicht gemessen werden. Nach den Angaben von LAPP (1991) für die Kieler Bucht ist jedoch zu erwarten, daß in anoxischen Bedingungen im bodennahen Wasser die Gradienten steiler ausfallen und die Flüsse, besonders bei HS⁻, PO₄³⁻ und NH₄⁺ im Vergleich größer sind. Die Zunahme der Nährstofflüsse wurde von BALZER (1984) bei Bodenwasser mit anoxischem Charakter auf Zersetzungsvorgänge von unter den herrschenden Bedingungen absterbender organischer Masse zurückgeführt. Die erhöhten Freisetzungen an Phosphat wurden mit sich auflösenden Eisen-(Hydr)oxiden begründet, da diese als Reaktionspartner fungieren. Dies belegen Arbeiten von (BALZER, 1986); (KROM und BERNER, 1981). Vergleicht man diese Interpretation mit den während der Stagnationsperiode im September 1993 gemessenen hohen Fe-Flüssen, so wird die Annahme der höheren Freisetzungen für das Untersuchungsgebiet untermauert.

Durch Freisetzungen an Ammonium und Phosphat aus dem Sediment kann mit einer Stimulation der Epiphytobenthosaktivität im Untersuchungsgebiet gerechnet werden (HÖPNER und WONNEBERGER, 1985). Dabei muß berücksichtigt werden, daß je nach Seegebiet und den herrschenden Bedingungen (organisches Material, Abbauraten, Sauerstoffgehalt im bodennahen Wasser und dem obersten Sedimentbereich) mit jahreszeitlich unterschiedlichen Freisetzungsraten zu rechnen ist.

## 7.1 Betrachtungen zu den Stofflüssen für das gesamte Gebiet der Mecklenburger Bucht

Für das Untersuchungsgebiet in der Mecklenburger- und Lübecker Bucht konnten unterschiedliche Sedimenttypen festgestellt werden. Je nach Typologie ergeben sich für die gesamte Bucht deutliche Flächenunterschiede zu den jeweiligen Sedimenttypen.



## Abb. 81 Flächenmäßige Verteilung verschiedener Sedimenttypen in der Mecklenburger Bucht

Die Ergebnisse der Vermessungen nach der Sedimentkarte (Bereich von Fehmarn bis Darßer Schwelle) zeigen dabei für den Schlickbereich den größten Anteil mit einer Gesamtfläche von 1.400 km². Die territoriale Ausdehnung bei schlickigem Sand liegt bei 700 km² und bei sandigem Schlick bei 400 km². Dem jeweiligen Sedimenttyp lassen sich die Stationen im Untersuchungsgebiet entsprechend nachfolgender Aufstellung zuordnen:

Station	120	sandiger Schlick
	12b	Schlick
	230	Schlick
	23a	Schlick
	23b	schlickiger Sand

Nach den Ergebnissen der Berechnungen läßt sich je nach Station ein unterschiedlicher Fluß (z.B. Fe und Mn im Vergleich der Transekte 12 und 23) erkennen, was zeigt, daß die Bedingungen, wie die Sauerstoffversorgung des bodennahen Wassers und die Freisetzbarkeit im Sediment eingelagerter Stoffe unterschiedlich sind.

Unter der Annahme flächendeckend gleichartiger saisonaler Situationen, Bioturbationsleistung und gleichen Gehalten im Sediment würden sich je nach Fläche und Sedimenttyp zum Teil beachtliche effektive Stofflüsse ergeben.

# Tab.25Massenbilanzierung der Stofflüsse für Fe und Mn nach Flächenanteil<br/>der Sedimenttypen in der Mecklenburger Bucht

Station / Beprobung	Sedimenttyp	Element	eff. Fluß (mg x m ² x a ⁻¹ )	eff. Fluß pro Flächenanteil (kg x a ⁻¹ )
120 (9/93)	sandiger Schlick	Mn	1779,2	748,5
		Fe	2911,8	1224,9
12b (9/93)	Schlick	Mn	3345,6	4738,8
		Fe	2647,4	3749,8
120 (2/94)	sandiger Schlick	Mn	2,1	0,88
		Fe	11,66	4,90

Diese Angaben sind natürlich insoweit zu relativieren, daß ganzjährig unterschiedliche Bedingungen, wie Sauerstoffsättigung, im bodennahen Bereich auftreten. Andererseits wird jedoch deutlich, wie sich bei zunehmender Eutrophierung und damit einhergehenden Sauerstoffverarmung derartige Situationen großflächig auswirken könnten.

#### 8. Zusammenfassung

Das Untersuchungsgebiet wurde in den einzelnen Beprobungszeiträumen durch saisonal bedingte meteorologische Einflüsse geprägt. Diese zeigten sich in winterlichen Wetterlagen im Februar 1993, bei denen trotz ausgebildeter Salzschichtung eine gute Sauerstoffversorgung bis in den Tiefenwasserbereich beobachtet werden konnte, weiterhin in einer Stagnationsperiode im September 1993.

Die in diesen Zeitraum fallende Beprobung ergab zum Teil vollständig zurückgegangene Sauerstoffgehalte und die **Ausbildung von anoxischen Verhältnissen** in den bodennahen Wasserschichten von 5, 10, 20 und 40 cm über dem Sediment, in denen die Beprobungen durchgeführt wurden. Entlang der Transekte wurde festgestellt, daß während dieser Periode an den küstennächsten Stationen 12c und 23c im sedimentnahen Bereich Sauerstoff vorhanden war.

Der Beprobungszeitraum im November 1993 war gekennzeichnet durch eine Sturmperiode, in deren Auswirkungen beträchtliche Mengen Sediment resuspendiert worden sind. Die Sauerstoffversorgung, bis in den Tiefenwasserbereich hinein, stieg deutlich an.

Die durch die Freisetzung an Phosphat angenommene Auflösung von Fe-(Hydr)-oxiden konnte durch die Schwermetallanalyse im Bodenwasser bestätigt werden. Während der Stagnationsperiode im September wurden für Fe, aber auch für Mn die höchsten Konzentrationen gemessen. Durch dieses Ergebnis ist belegt, daß während der Stagnationsperiode im September 1993 im bodennahen Bereich anoxische Verhältnisse auftraten, bei denen die Verteilung von  $Mn^{2+}$  und Fe²⁺ durch den Totalfluß aus der Grenzfläche Sediment / bodennahes Wasser kontrolliert ist.

Das Element Co folgt dem bei Fe und Mn bereits besprochenen Trend, da es ebenfalls in anoxischen Regionen eine hohe Mobilität aufwies. Beim Ni konnte während derselben Stagnationsperiode, wie bereits beim Co (Mn u. Fe), ein Anstieg der Konzentration beobachtet werden, obwohl dieses Element im oxischen Bereich mobil ist. Als eine mögliche Ursache können Copräzipitatbildungen (Fe / Mn-Akkumulate) angenommen werden durch deren Auflösung das Ni in die Wassersäule freigesetzt wurde. Eine Proportionalität zwischen Cd und der Menge an partikulärem Material konnte festgestellt werden. Nach Beendigung der Stagnationsperiode sanken die Konzentrationen an Mn und Fe sowie Co und Ni in der Wassersäule.

Während der Beprobungzeiträume wurden im Untersuchungsgebiet stark variierende Schwebstoffkonzentrationen festgestellt, was als Folge von starken Strömungsturbulenzen im bodennahen Bereich sowie durch Sturmeinwirkungen zu sehen ist.

Bei der Schwermetallanalyse der Schwebstoffe konnte ein deutlicher Resuspensierungseffekt festgestellt werden, da sich die terrigene Elemente Al, Fe und auch Co mit zunehmendem SPM-Gehalt an die jeweilige Oberflächensedimentkonzentration annäherten. Bei den Elementen Cu, Ni und Cd wurden mit steigenden SPM-Gehalten abnehmende Konzentrationen festgestellt, was mit einer Verdünnung des biogenen Trägermaterials durch resuspendierte mineralische Partikel erklärt werden kann, da diese Elemente vorwiegend an organische Matrix gebunden sind. Beim Mn konnte auch eine Annäherung an die Oberflächensedimentkonzentration festgestellt werden, was durch Freisetzungen aus dem Sediment und anschließender Wiederausfällung als Mn-Oxide erklärt werden kann, da diese durch resuspendiertes Material verdünnt worden sind.

Beim Pb konnten analog dem Mn mit steigender SPM-Menge abnehmende Konzentration gefunden werden.

Die ermittelten  $K_D$ -Werte zeigten bei den Elementen Co und Cu eine gute Übereinstimmung mit Literaturwerten. Bei Pb, Cd, Ni und Fe lagen die  $K_D$ -Werte um den Faktor 2-3 höher als in der angegebenen Literatur. Insgesamt wurden bei den gemittelten  $K_D$ -Werten große Standardabweichungen festgestellt. Dies steht in Übereinstimmung mit den Konzentrationsunterschieden in Abhängigkeit von den SPM-Gehalten und ist als Indiz für eine große Sedimentdynamik zu sehen.

Es wurde ferner deutlich, daß saisonal bedingte Änderungen der Redoxzustände im bodennahen Wasser für deutliche Unterschiede bei den  $K_D$ -Werten verantwortlich sind, insbesondere bei den Elementen Co und Mn. Ein Einfluß des partikulären Materials auf die Konzentrationen der gelösten Metalle im Untersuchungsgebiet konnte festgestellt werden.

Es wurde deutlich, daß sowohl im zentralen Bereich der Mecklenburger Bucht, als auch in Küstennähe deutlich geringere Anteile an **POC** in den Schwebstoffen auftraten. So wurde für den Bereich der Mecklenburger Bucht festgestellt, daß mit zunehmendem SPM-Gehalt der Gehalt an POC abnahm. Dieser Sachverhalt weist auf **Resuspensionseffekte des** Sedimentes hin. Für die Austauschvorgänge zwischen partikulärer und gelöster Phase sind die Mobilisierbarkeiten der partikulär gebundenen Schwermetalle von großer Bedeutung.

Bei Extraktionsexperimenten mit 0.5 M HCl wurden deutliche Unterschiede zwischen den einzelnen Metallen festgestellt. So konnte bei den Elementen Cu, Cd, Zn, Pb und Mn in den meisten Fällen mehr als 80 % des Metallanteils remobilisiert werden. Bei Co und Fe lagen die mobilisierbaren Anteile bei > 50 %. Ni wies mobile Anteile auf, die saisonal zwischen 50-80 % schwankten. Bei Al konnten die geringsten mobilen Anteile gefunden werden, was auf das Vorliegen von Alumosilikaten zurückzuführen ist, die in HCl nicht löslich sind. Mn zeigte mobile Anteile, die um 80 % lagen. Bei saisonal getrennter Betrachtung zeigte sich bei den Elementen Fe, Co und Mn während der Stagnationsperiode im September 1993 eine Mobilisierbarkeit zwischen 95 - 100 %. Dabei wurden beim Co, im Gegensatz zu den Elementen Fe und Mn, während der gesamten Beprobungszeit nahezu gleichbleibende Gesamtgehalte an den Partikeln festgestellt, die Gehalte an HCl-löslichem Fe und Mn schwankten dagegen stark.

Wie aus den Ergebnissen der Partikeluntersuchung deutlich wurde, spielen die Sedimente im Gesamtsystem des Stoffaustausches eine wichtige Rolle. Bei den untersuchten Sedimentkernen zeigte die **Korngrößenverteilungen** eine teilweise krasse Veränderung der Anteile in geringer Tiefe. Dies kann ein Hinweis auf strömungs- bzw. turbulenzbedingte Schichtungen sein, die gerade im Flachwasserbereich bei Sturmperioden auftreten.

Der Kohlenstoffgehalt der Sedimentkerne erbrachte als wichtiges Ergebnis, daß der Gehalt an anorganischem Kohlenstoff den geringsten Anteil aufwies. Es wurde ein mittlerer Kohlenstoffgehalt für die Kern 120, 12b und 230 von 5-6 % festgestellt.

Bei der Untersuchung des Schwefelgehaltes der Kerne des Untersuchungsgebietes konnten bei Kern 120 Gehalte zwischen 0,45 - 2,1 % festgestellt werden. Kern 12b wies einen Gehalt zwischen 0,28 - 2,3 % auf. Bei Kern 230 wurden Gehalte zwischen 0,7- 1,55 % gemessen. Bei allen drei Kernen nahmen die S-Gehalte mit der Tiefe zu. Lediglich bei Kern 23b wurde das Schwefel-Maximum in der Tiefe von 5 cm gefunden, dieser nahm dann wieder ab. Im obersten Bereich lag der Schwefel-Gehalt dabei zwischen 0,28 - 2,3 %.

Nach den Ergebnissen des Totalaufschlusses konnten für die Profilverläufe bei den Elementen Zn, Pb, Cu und Cd in den obersten Sedimentbereichen der Kerne zum Teil stark

erhöhte Konzentrationen gefunden werden, was auf einen anthropogenen Eintrag über die letzten Jahrzehnte schließen läßt.

Nahezu gleichmäßige Verläufe wurden für die Elemente Cr, Ni, Co, Fe und Al beobachtet. Mn hingegen zeigte mit der Tiefe zunehmende Konzentrationen. Es kann davon ausgegangen werden, daß sich im Bereich der Mecklenburger Bucht die **Paläoredoxbedingungen** in den letzten Jahrzehnten in Richtung anoxischer Reaktionsbedingungen verändert haben. Das redoxsensible Element Mn konnte dabei durch Diffusionsmigration über die Grenzfläche Sediment / bodennahes Wasser aus dem Sediment gelangen.

Nach den Extraktionsexperimenten am Sediment konnten für die einzelnen Elemente sehr unterschiedliche Mobilisierbarkeiten festgestellt werden. Die Elemente Al, Fe, Co und Ni wiesen dabei die höchsten residualen Anteile auf.

Wesentlich höhere Mobilisierungsanteile konnten bei den Elementen Zn, Cd, Pb und Cu gefunden werden.

Die bei den Elementen Cu, Pb, Zn und Cd bereits dargestellte Zunahme der Konzentrationen im oberen Sedimentbereich wurde durch eine Normierung mittels des terrigenen Elementes Li auf ihren anthropogenen Charakter untersucht. Dabei konnte ein anthropogener Einfluß nachgewiesen werden.

Bei der Betrachtung der Anreicherungsfaktoren wurde deutlich, daß innerhalb des Untersuchungsgebietes bei den Stationen 120, 12b, 230 und 23b im Hinblick auf die Elemente Ni, Co und Cr eine gute Übereinstimmung besteht. Bei den Elementen Zn, Cd, Cu und Pb hingegen traten deutliche Unterschiede auf.

Bei den anthropogen belasteten höheren Sedimentschichten wurde deutlich, daß Pb, Cu, Cd und Zn in deutlich höheren Konzentrationen vorlagen. Innerhalb dieser Schichten zeigten sich Unterschiede zwischen den Stationen von Schnitt 12 (MBB) und Schnitt 23 (LB). Die Gehalte der Station 230 waren zum Teil erheblich höher als bei Station 120. Die Schlicksandstation 23b wies deutlich niedrigere Konzentrationen auf, was mit dem geringeren Schlickanteil begründet werden kann.

Beim Vergleich der Akkumulationsraten der Lübecker, Mecklenburger und Kieler Bucht zeigte sich z.B. bei Mangan im geogenen Bereich eine 2 - 5 fach höhere Akkumulationsrate an den Stationen der Lübecker und Mecklenburger Bucht. Diese Ergebnisse unterstreichen,

daß in der Lübecker und Mecklenburger Bucht im Bereich des zentralen Beckens mit Schlicksediment die vergleichsweise höchsten Akkumulationsraten wiederzufinden sind.

Bei der Untersuchung des **Porenwassers** der Sedimente wurde der **DOC** und die Schwermetalle betrachtet. Im Ergebnis der Analyse des **DOC** konnten Anstiege im Konzentrationsverlauf mit der Sedimenttiefe sowie saisonale Konzentrationsunterschiede in der obersten Sedimentschicht von 0-1 cm festgestellt werden. So wurden im obersten Sedimentbereich Gehalte festgestellt, die in der Größenordnung von 5 mg C  $\Gamma^1$  lagen. Im Tiefenbereich (bis 40 cm) konnten DOC-Gehalte bis 25 mg C  $\Gamma^1$  gemessen werden.

Die Redoxprofile spiegelten sich in den Konzentrationsverläufen der Schwermetalle im Porenwasser unterschiedlich wider. Bei Fe und Mn wurden die höchsten Gehalte von entsprechend ihrem bekannten Verhalten in der suboxischen Zone gefunden. An Station 120 wurde im September 1993 ein Mn - Gehalt von max. 3 mg / 1 gefunden, der Fe - Gehalt lag bei 5 mg / 1. Im Februar 1994, wo eine oxische Schicht des Sedimentes bereits deutlicher ausgebildet vorlag, wurden im obersten Sedimentbereich die geringsten Konzentrationen gemessen. Die Maxima lagen in einer Tiefe von 3 - 4 cm. Ein ähnliches Verhalten von Fe und Mn wurde im Profil der Beprobung vom Mai 1994 gefunden. Bei den Elementen Co und Ni wurden während der Stagnationsperiode (September 1993) im oberflächennahen Sediment ebenfalls die höchsten Konzentrationen gemessen. Dies kann als unmittelbare Folge der Bildung löslicher Verbindungen des Fe und Mn und der Freisetzung von Ni aus den Präzipitaten angesehen werden, da Ni prinzipiell in oxischen Bereichen in größeren Konzentrationen vorliegt, entgegen dem Co, was sich wie das Fe und Mn verhält.

Cu und Cd wiesen im Porenwasser der Station 120 ebenfalls die höchsten Konzentrationen im obersten Sedimentbereich (0 - 2 cm) auf. Diese nimmt mit der Tiefe deutlich ab, da die Elemente Cu und Cd im oxischen Bereich infolge Sulfidfällung unlöslich sind. Wesentlich geringere Konzentrationen an Mn, aber auch an Eisen wurden bei den Stationen des 23-er Transektes gefunden. So lag die Mn-Konzentration im obersten Sedimentbereich im September 1993 bei 0,4 mg/l. Eisen wurde in einer Konzentration von 2,4 mg/l gemessen. Die Ausbildung von Konzentrationsmaxima direkt unterhalb der Sedimentoberfläche ist jedoch den 12-er Stationen der zentralen Mecklenburger Bucht vergleichbar.

Der oxidierende Bereich bei Station 230 lag entsprechend der Redoxmessungen bei einer Tiefe von 0- 1,2 cm. Ein wichtiges Ergebnis der Untersuchungen ist, daß die Gehalte an Mn und Fe im Porenwasser der Transekte 12 und 23 deutliche Unterschiede aufwiesen. Es zeigte sich in den Konzentrationsverläufen, bei denen das Porenwasser der Station 230 lediglich 50 % des Gehaltes im Vergleich zu Station 120 aufwies. Das unterschiedliche Dargebot an mobilisierbarem Mn und auch Fe an den einzelnen Stationen kann als wichtiger Indikator für die beobachteten Konzentrationen im Bodenwaser gewertet werden, die in der Stagnationsperiode im September 1993 gemessen wurden. Es ist weiterhin bekannt, daß die Region um Station 120 ein häufiges Fundgebiet von Mn / Fe-Akkumulaten ist.

Während der Beprobungsabschnitte konnten im Untersuchungsgebiet eine unterschiedliche Versorgung mit Sauerstoff festgestellt werden. So kam es im September 1993 zu akuten Sauerstoffmangelzuständen.

Um den Einfluß der Bioturbation auf die **Stofflüsse (D**_{eff}) zu quantifizieren, wurden Flußberechnungen durchgeführt. Für Mn wurden bei den Stationen 120 und 12b Flüsse von 889,6 mg x m⁻² a⁻¹ und 1672,8 mg x m⁻² x a⁻¹ festgestellt. Dieser lag bei Station 120 im Februar 1994 bei 1,05 mg x m⁻² x a⁻¹, d.h. über das 800-fache geringer. Bei Station 230 wurden im September 1993 lediglich Flüsse in einer Größenordnung von 155,2 mg m⁻² x a⁻¹ berechnet. Mit Zunahme der Sauerstoffgehalte im Februar 1994 lagen diese lediglich noch bei 2,09 mg x m⁻² x a⁻¹. Eine vergleichbare Situation stellte sich beim Element Fe dar.

Die effektiven Flüsse von Mn lagen während der Stagnationsperiode im September bei den Stationen 120 und 12b bei Werten von 1779,2 mg x m⁻² x a⁻¹ und 3345,6 mg x m⁻² x a⁻¹. Im Februar 1994 erreichten die Flüsse bei Station 120 eine Größenordnung von 2,1 mg x m⁻² x a⁻¹. Bei Station 230 konnten während im September 1993 Mn-Flüsse von 310,4 mg x m⁻² x a⁻¹, die dann im Februar 1994 bei 2,09 mg x m⁻² x a⁻¹ lagen. Auch hier wird das geringere Flußpotential des Transektes 23 in der Lübecker Bucht deutlich.

Bei Fe konnten an Station 120 und 12b im September 1993 effektive Flüsse von 2911,8 mg x m² x a⁻¹ und 2647,4 mg x m² x a⁻¹ errechnet werden. Mit Zunahme der Sauerstoffkonzentrationen in der bodennahen Wasserschicht sanken die Flüsse an Fe deutlich ab. So konnte im Februar 1994 an Station 120 nur 11,6 mg x m² x a⁻¹ und bei Station 230 von 5,2 mg x m² x a⁻¹ errechnet werden.

Beim Co ist im Vergleich der saisonal unterschiedlichen Flüsse ein Trend ähnlich dem Fe und Mn festzustellen. Dies kann durch das diesen Elementen entsprechende Redoxverhalten erklärt werden. Vergleicht man dies mit den Flüssen beim Ni, so wird deutlich, daß sich bei Station 120 keine Veränderung ergeben hat. Da Ni ein dem Mn ähnliches Redoxverhalten hat, kann man so davon ausgehen, daß die höheren Flüsse von Ni während der Stagnation im September 1993 auf erhöhte Gradienten infolge der Auflösung von Fe-Mn-Präzipitaten im Sediment zurückzuführen sind.

Cu und Cd zeigten im September 1993 den höchsten Fluß im Vergleich zum Februar 1994. Es kann daher angenommen werden, daß auch diese Metalle, wie bereits das Ni in ihrem Stoffkreislauf eng an die Elemente Fe und Mn gebunden sind, da diese durch ihre wesentlich höheren Konzentrationen bei Fällungs- und Auflösungsvorgängen dominieren.

Für das Untersuchungsgebiet in der Mecklenburger und Lübecker Bucht konnten unterschiedliche Sedimenttypen festgestellt werden. Es ergeben sich für die gesamte Bucht unterschiedliche Flächenanteile.

Die Ergebnisse der Vermessungen nach der Sedimentkarte zeigten für den Schlickbereich den größten Anteil mit einer Gesamtfläche von 1.416,4 km². Der territoriale Anteil an schlickigem Sand liegt bei 667,8 km² und bei sandigem Schlick bei 420,7 km². Dies legt nahe, daß sich Remobilisierungen und Freisetzungen über die Grenzfläche Sediment / bodennahes Wasser jeweils unterschiedlich verhalten.

In dieser Arbeit konnten insgesamt verschiedene Situationen in der Mecklenburger Bucht und ihre Bedeutung für die Stofflüsse bei Nährstoffen und Schwermetallen dargestellt werden. Es wurde ein zum Teil erstmalig für dieses Gebiet gewonnener Datensatz erbracht, der jedoch auch deutlich macht, daß der bisherige Kenntnisstand für diese Region noch umfangreicher untersucht werden muß. Zum anderen konnten die Methoden der Probennahme erst während der eigentlichen Arbeit spezialisiert werden, sodaß einige Datensätze nicht komplett sind. Es wäre weiterhin sinnvoll, Beprobungen in kürzeren Zeitabständen durchzuführen, um auftretende Resuspensionseffekte bei den Schwebstoffen und Remobilisierungseffekte bei Schwermetallen und Nährstoffen noch deutlicher herauszuarbeiten.

#### Literatur

ALLER, R.C., 1980: Diagenetic processes near the sediment-water interface of Island Sound II. Fe and Mn; Advances in Geophysics 22, S. 351 - 415.

ALONGI, D.M., 1991: The role of intertidal mudbanks in the diagenesis and export of dissolved and particulate materials from the Fly Delta, Papua New Guinea; J. Exp. Mar. Biol. Ecol. 149, S. 81 - 107.

BALZER, W.; ERLENKEUSER, H.; HARTMANN, M.; MÜLLER, P.J.; POLLEHNE, F., 1987: in: RUMOHR, J.; WALGER, E.; ZEITZSCHEL, B. (eds.); Seawater-sediment interactions in coastal waters. Lecture Notes on Coastal and Estuarine Studies 13, Springer-Verlag, Berlin, S. 111 - 161.

BELMANS, F.; VAN GRIEKEN, R.; BRÜGMANN, L., 1993: Geochemical characterization of recent sediments in the Baltic Sea by bulk and electron microprobe analysis: Marine Chemistry 42, S. 223 - 236.

BERNER, R.A., 1971: Principles of chemical sedimentology; McGraw-Hill, New-York, 240 S.

BRÜGMANN, L., 1986: The influence of coastal zone processes on mass balance for trace metals in the Baltic Sea: Rapp. P.-v. Reun. Cons. int. Explor. Mer, 186: S. 329 - 342.

BRÜGMANN, L., 1986: Particulate trace metals in waters of the Baltic Sea and parts of the adjacent NE Atlantic: Beitr. Meeresk. Heft 55, S. 3 - 18.

BRÜGMANN, L., 1988: Some Peculiarities of the trace-metal distribution in baltic waters and sediments: Marine Chemistry 23, S. 425 - 440.

BRÜGMANN, L., LANGE, D., 1983: Geochemische und sedimentologische Untersuchungen an einem Schlickkern aus dem Schlickgebiet der Lübecker Bucht: Gerlands Beitr. Geophysik, Leipzig 92, Heft 2-4, S. 241 - 268.

BRUGMANN, L.; LANGE, D., 1990: Metal Distribution in Sediments of the Baltic Sea: Limnologica (Berlin) 20 (1), S. 15 - 28.

BRÜGMANN, L.; BERNARD, P.C.; VAN GRIEKEN, R., 1992: Geochemistry of suspended matter from the Baltic Sea: Marine Chemistry 38, S. 303 - 323.

DAMM, E., 1992: Frühdiagenetische Verteilung von Schwermetallen in Schlicksedimenten der westlichen Ostsee: Berichte, Fachbereich Geowissenschaften, Universität Bremen, Nr. **31**, 115 S.

DE FLAUN, M.F.; MAYER, L.M., 1983: Relationship between bacteria and grain surfaces in intertidal sediments; Limnol. Oceanogr. 28, S. 873 - 881.

DEHAIRS, F.; BAEYENS, W.; VAN GANSBEKE, D., 1989: Tight coupling between enrichment of iron and manganese in North Sea Suspended Matter and sedimentary redox processes: evidence for seasonal variability: Estuar. Coastal Shelf Sci. **29**, S. 457 - 471.

DUINKER, J.C., 1983: Effects of particle size and density on the transport of metals to the oceans. In: C.S. WONG ET AL. (eds.): Trace metals in Sea Water, Plenum Press, New-York, S. 209-226.

EISMA, D.; KALF, J., 1987: Dispersal, concentration and deposition of suspended matter in the North Sea; Geol. Soc. London 144, S. 161 - 178.

ELDERFIELD, H.; MCCAFFREY, R.J.; LUEDTKE, N.; BENDER, M.; TRUESDALE, V.W., 1981: Chemical diagenesis in Narrangansett Bay sediments; American Journal of Science 281, S. 1021 - 1055.

FISHER, T.R.; CARLSON, P.R., BARBER, R.T., 1982: Sediment Nutrient Regeneration in Three North Carolina Estuaries: Estuarine, Coastalans Shelf Science: 14, S. 101 - 116.

FÖRSTNER, U., 1983: Bindungsformen von Schwermetallen in Sedimenten und Schlämmen: Sorption / Mobilisierung, Chemische Extraktion und Bioverfügbarkeit; Fresenius Z. Anal. Chem. **316**, S. 604 - 611.

FÖRSTNER, U.; SALOMONS, W., 1980: Trace metal analysis on polluted sediments. Part I: Assessments of sources and intensities: Environ. Techn. Lett. 1, S. 494 - 505.

GOSSELCK, F.; GEORGI, F., 1984: Benthic recolonization of the Lübeck Bight (Western Baltic) in 1980/81: Limnologica (Berlin), 15(2), S. 407 - 414.

GOBEIL, C.; SILVERBERG, N.; SUNDBY, B.; COSSA, D., 1987: Cadmium diagenesis in Laurethian Trought sediments; Geochimca et Cosmochimica Acta 51, S. 589 - 596.

HARGRAVE, B.T., 1980: Factors affecting the flux of organic matter to sediments in a marine bay; In: TENORE, K.R., COULL, B.C. (Eds.) Marine benthic dynamics. Univ. of South Carolina Press, Columbia, S. 243 - 263.

HARMS, U.; BRÜGMANN, L., 1990: Second periodic assessment of the state of the marine environment of the Sea (1984-1988); Background Document; Baltic Sea Environmental proceedings No. 35B, HELCOM

HEGGIE, D.; LEWIS, T., 1984: Cobalt in pore waters of marine sediments: Nature 311, S. 453 - 455.

HERMANN, M.J. ET AL. (1991); The Westerschelde: Interaction between eutrophication and chemical pollution ?: ECSA 19 Symposium; Estuaries and Coasts: Spatial and Temporal Intercomparisons; 4.-8. September 1989, Univ. Caen, France, S. 359 - 364.

HERNDL, G.J., 1989: Diel and spatial variations in bacterial density in a stratified water column of the Gulf of Trieste; Prog. Oceanogr. 21, S. 33 - 40.

HERNDL, G.J.; PEDUZZI, P., 1988: The ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea: I. General considerations. P.S.Z.N.I.: Mar. Ecol. 9, S. 79 - 90.

HERNDL, G.J.; PEDUZZI, P.; FANUKO, N., 1989: Benthic community metabolism and microbial dynamics in the Gulf of Trieste (Northern Adriatic Sea); Mar. Ecol. Prog. Ser. 53, S. 169 - 178.

HEIM, D., 1990: Tone und Tonminerale, Enke Verlag, Stuttgart, 157 S.

HINES, M.E.; OREM, W.H.; LYONS, W.B.; JONES, G.E., 1982: Microbial activity and bioturbation induced oscillations in pore water chemistry of estuarine sediments in spring; Nature 299, S. 433 - 435.

HINES, M.E.; LYONS, W.M.B.; ARMSTRONG, P.B.; OREM, W.H.; SPENCER, M.J.; GAUDETTE, H.E.; JONES, G.E., 1984: Seasonal Metal Mobilization in the Sediments of Great Bay, New Hamshire; Marine Chemistry 15, S. 173 - 187.

INGALL, E.; JAHNKE, R., 1994: Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters: Geochimica et Cosmochimica Acta 58, No. 11; S. 2571 - 2575.

JENSEN, H.S.; KRISTENSEN, P.; JEPPERSEN, E.; SKYTTHE, A., 1992: Iron: phosphorus ratio in sur-face sediment as an indicator of phosphate release from aerobic sediments in shallow lakes: Hydrobiologica; 235/236, S. 731 - 743.

JONASZ, M., 1983: Particle-size distribution in the Baltic; Tellus 35B, S. 346 - 358.

KERSTEN, M., 1989: Mechanismen und Bilanz der Schwermetallfreisetzung aus einem Süßwasserwatt der Elbe; Dissertation, TU Hamburg-Harburg, 122 S.

KERSTEN, M.; FÖRSTNER, U., 1985: Trace metal partitioning in suspended matter with special reference to pollution in the southeastern North Sea: Mitt. Geol.-Paläontol. Inst. Univ. Hamburg 58, S. 631 - 645.

KERSTEN, M.; FÖRSTNER, U., 1989: Speciation of Trace Elements in Sediments In: G.E. Batley (Ed.) Trace element Speciation: Analytical Methods and Problems, CRC-Press, S. 245 - 317.

KERSTEN, M.; KIENZ, W.; KOELLING, S.; SCHRÖDER, M.; FÖRSTNER, U., 1990: Schwermetallbelastung in Schwebstoffen und Sedimenten der Nordsee: Vom Wasser 75, S. 245 - 272.

KERSTEN, M.; KRIEWS, M.; FÖRSTNER, U., 1991: Partitioning of trace metals released from polluted marine aerosols in coastal seawater: Mar. Chem. 36, S. 165-182.

KITLAR, J., 1991: Der Einfluß der Bioturbation auf den Transport gelöster Stoffe im Porenwasser, Dissertation Universität Kiel, Institut für Meereskunde, Bericht Nr. 210, 99 S.

KITLAR, J., 1994: BMBF - Projekt MOST; Workshop, DERSAU, persönliche Mitteilung.

LANGE, D.; NIEDERMEYER, R.-O., 1985: Zur Untersuchung von Sedimentationsprozessen in der westlichen Ostsee (Mecklenburger Bucht) - Methodik und erste Ergebnisse: Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe **34**, S. 27 - 30.

LAPP, B., 1991: Metallmobilität in marinen Sedimenten und Eutrophierung der Kieler Bucht: Berichte aus dem Institut für Meereskunde, Kiel, Nr. 211, 81 S.

LAPP, B.; BALZER, W., 1993: Early diagenesis of trace metals used as an indicator of past productivity changes in coastal sediments, Geochimica et Cosmochimica Acta 57, S. 4639 - 4652.

LAXEN, D.P.H.; DAVISON, W.; WOOF, C., 1984: Manganese chemistry in rivers and streams; Geochemica et Cosmochimica Acta, Vol. 48, S. 2107 - 2111.

LEIPE, TH.; BRÜGMANN, L.; BITTNER, U., 1989: Zur Verteilung von Schwermetallen in rezenten Brackwassersedimenten der Boddengewässer der DDR: Chem. Erde 49, S. 21 - 38.

LI, Y.-H.; GREGORY, S., 1974: Diffusion of ions in sea water and in deep-sea sediments; Geochimica et Cosmochimica Acta 38, S. 703 - 714.

LORING, D.H., RANTALA, R.T.T., 1988: An Intercalibration Exercise for Trace Metals in Marine Sediments, Marine Chemistry 24, S. 13 - 28.

LORING, D.H.; RANTALA, R.T.T., 1992: Manual of the geochemical analysis of marine sediments and suspended particulate matter; Earth-Science Reviews, **32**, S. 235 - 283.

LORING, D.H.; WINDOM, H., 1994: Regional Applicability of Al and Li Normalization Proce-dures; unpubl. Paper, ICES Working Group on Marine Sediments in Relation to Pollution

MATTHÄUS, W., 1975: Mittlere Temperatur- und Sauerstoffverhältnisse in der Arkonasee am Beispiel der Station BY 2A auf 55° N, 14°E.: Beitr. Meereskunde, Berlin, **36**, S. 5 - 27.

MEYER-REIL, L.-A., 1983: Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight. II. Analysis of benthic bacterial populations; Mar. Biol. 77, S. 247 - 256.

MEYER-REIL, L.-A., 1984: Bacterial biomass and heterotrophic activity in sediments and overlaying waters; In: Hobbie, J.E.; Williams, P.J. (Eds.) Heterotrophic activity in the sea; Plenum Press, New York, S. 523 - 546.

MEYER-REIL, L.-A., 1986: Spatial and temporal distribution of bacterial populations in marine shallow water surface sediments; In: LASSERRE, P.; MARTIN, J.M. (Eds.) Biogeochemical processes at the land-sea boundary; Elsevier, Amstersam, S. 141 - 160.

MURRAY, J.W.; GRUNDMANIS, V.; SMETHIE, M. JR., 1978: Interstitial water chemistry in the sediments of Saanich Inlet; Geochimica et Cosmochimica Acta 42, S. 1011 - 1026.

MÜLLER, G.; DOMINIK, J.; REUTHER, R.; MALISCH, R.; SCHULTE, E.; ACKER, L.; IRION, G., 1980: Sedimentary Record of Environmental Pollution in the Western Baltic Sea, Naturwissenschaften 67, S. 595 - 600.

NEHRING, D.; FRANCKE, E., 1981: Hydrographisch-chemische Untersuchungen in der Ostsee von 1969 - 1978. I. Die hydrographischen Bedingungen und ihre Veränderungen: Geod. Geoph. Veröff., R. IV, **35**, S. 5 - 38.

NEHRING, D.; MATTHÄUS, W.; LASS, H.-U.; NAUSCH, G., 1994: Die hydrographischchemischen Bedingungen in der westlichen und zentralen Ostsee; D. Hydrogr. Z. 46 (2), S. 151 - 162.

NIEDERMEYER, R.-O.; LANGE, D., 1989: Die rezente Schlicksedimentation in der westlichen Ostsee - Eine Synthese: Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.nat.wiss. Reihe **38**, S. 90 - 97.

NIXON, S.W.; KELLY, J.R. FURNAS, B.N.; OVIATT, C.A.; HALE, S.S., 1980: Phosphorus regeneration and the metabolism of coastal marine bottom communities; In: TENORE, K.R.; COULL, B.C. (Eds.) Marine benthic dynamics. Univ. of South Carolina Press, Columbia, S. 219 - 242.

PEDERSEN, T.F., 1985: Early diagenesis of copper and molybdenium in mine tailings and natural sediments in Rupert and Holberg inlets, British Columbia, Canadian Journal of Earth and Science 22, S. 1474 - 1484.

PERTTILÄ, M.; BRÜGMANN, L., 1992: Review of Contaminants in Baltic Sediments, in: ICES Cooperative Research Report No. 180, 135 S.

RITZRAU, W.; GRAF, G., 1992: Increase of microbial biomass in the benthic turbidity zone of Kiel Bight after resuspension by a storm event: Limnol. Oceanogr. 37(5), S.1081 - 1086.

RUBLEE, P.A., 1982: Seasonal distribution of bacteria in salt marsh sediments in North Carolina; Estur. coast. Shelf Sci. 15, S. 67 - 74.

SCHLUNGBAUM, G., 1978: Komplexe ökologische Untersuchungen an den Darß-Zingster Boddengewässern unter besonderer Berücksichtigung des Nährstoffkreislaufes: Geogr. Ber. 88, S. 177 - 189.

SCHOER, J.; NAGEL, U.; EGGERSGLUESS, D.; FÖRSTNER, U., 1982: Metal Contents in Sediments from the Elbe, Weser and Ems Estuaries and from the German Bight (South-eastern North Sea): Grain Size Effects: Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE / UNEP Sonderband, Heft 52, S. 687 - 702.

SCHULZ - TOKOS, J.J.; KREMLING, K.; STREU, P.; BRÜGMANN, L.; HENNINGS, U., 1993: Räumliche und zeitliche Variabilität ausgewählter Spurenmetalle in der Kieler und Mecklenburger Bucht - Datenbericht 1990/92: Berichte aus dem Institut für Meereskunde, Universität Kiel, Nr. 238, 83 S.

SMETACEK, V., 1984: The supply of food to the benthos; In: Fasham, M.J.R. (Ed.) Flows of energy and materials in marine ecosystems; Plenum Press, New York, S. 517 - 548.

SUESS, E., ERLENKEUSER, H., 1975: History of Metal Pollution and Carbon Input in Baltic Sea Sediments; Meyniana 27, S. 63 - 75.

SUNDBY, B.; GOBEIL, C.; SILVERBERG, N.; MUCCI, A., 1992: The phosphorus cycle in coastal sediments: Limnol. Oceanogr., 37(6), S. 1129 - 1145.

SUNDBY, B. ET AL., 1986: The effect of oxygen on release and uptake of cobalt, manganese, iron and phospate at the sediment - water interface: Geochimica et Cosmochimica Acta 50, S. 1281 - 1288.

THOMSEN, L., GRAF, G., MARTENS, V.; STEEN, E., 1994: An instrument for sampling water from the benthic boundary layer: Continental Shelf Research 14, No. 7/8, S. 871 - 882.

ULLMANN, W.J.; ALLER, R.C., 1982: Diffusion coefficients in nearshore marine sediments; Limnol. Oceanogr. 27, S. 552 - 556.

WEFER, G.; WEBER, W., 1987: Abbildung von Sauerstoffmangel und Nährstoff-situation im Sediment. Abschlußbericht zum UBA - Projekt Wasser, FK 102 04 215, Teilvorhaben 10, 64 S.

WESTERLUND, S.F.G.; ANDERSON, L.G.; HALL, P.O.J.; IVERFELDT, A.; RUTGERS VAN DER LOEFF, M.M.; SUNDBY, B., 1986: Benthic fluxes of cadmium, copper, nickel, zinc and lead in the coastal environment:Geochimica et Cosmochimica Acta 50, S. 1289-1296.

WILLIAMSON, R.B.; HUME, T.M.; MOLKRIJNEN, 1994: A comparison of the early diagenetic environment in intertidal sands and muds of the Manukau Harbour, New Zeeland, Environmental Geology 24, S. 254 - 266.

ZEITZSCHEL, B.F., 1980: Sediment-water interactions in nutrient dynamics; In: TENORE, K.R.; COULL, B.C. (Eds.) Marine benthic dynamics. Univ. of South Carolina Press, Columbia, S. 195 - 212.

Gesa	mtdaten	Boden	wasser	- SPM -	POC -	Schwer	metalle	e (Total	u. Lead	china) Si	tation 1	20								Tab. 1
Monat	H.U.Sed.(cm)	SPM (mg/l)	POC mg/l	Pb-WS(ng/l)	Pb-L (mg/kg)	Pb-T (mg/kg)	G (mg/kg)	Cd-WS (ng/l)	Cd-L (mg/kg	) Cd-T (mg/kg)	G (mg/kg)	Cu-WS(ng/l)	Cu-L (mg/kg	i) Cu-T (mg/kg)	G (mg/kg)	Co-WS (ng/l)	Co-L (mg/kg)	) Co-T (mg/kg)	G (mg/kg)	
Feb 93	5 10 20 40	2,55 0,98 0,74 0,38	0,34 0,70 0,30	119,20 51,90 26,90 96,50	103,55 127,74 362,29 134,40	21,81 20,15 112,73 40,27	125,35 147,89 475,02 174,67	22,10 16,90 15,90 18,60	1,06 1,56 1,87 2,88	0,62 1,47	2,49 4,35	1630,00 2390,00 2300,00 1630,00	152,20 414,45 428,69 536,80	34,43 45,57 53,60 106,13	186,64 460,02 482,29 642,93	20,60 24,30 27,90 14,70	11,01 13,54 11,99 11,47	5,82 6,83 0,59	16,83 20,37 12,58 11,47	
Mai 93	5 10 20 40			241,40 187,30 170,50 155,30				45,70 30,70 39,20 55,70				690,00 670,00 750,00 920,00				10,60 10,60 10,60 21,30				
Sep 93	5 10 20 40	0,38 0,44 0,65 0,37	0,22	54,00 379,50 340,50 78,10	97,61 742,22 504,80 91,58	7,11 92,63 27,22 39,72	104,71 834,84 532,02 131,30	23,80 75,00 57,10 27,90	5,73 3,89 1,86 0,63	0,68 1,47 0,82 0,21	6,40 5,36 2,68 0,85	947,00 515,00 1530,00 821,00	47,11 233,52 700,23 41,01	7,18 34,78 54,68 11,81	54,29 268,29 1367,78 52,82	175,30 187,70 170,40 237,00	21,13 14,65 8,72 3,20	0,00 0,00 0,00 0,00	21,13 14,65 8,72 3,20	
Nov 93	200 500 800	0,91 0,26 0,53		187,70 79,60 66,80	9,57 11,12 8,44	36,08 74,19 51,70	45,65 85,31 60,13	28,30 18,60 34,90	0,83 1,85 1,33	1,04 2,16 1,70	1,87 4,00 3,03	650,00 620,00 450,00	23,29 31,65 36,91	10,88 11,81 13,43	34,18 43,46 50,34	8,00 9,60 8,00	9,70 8,46 5,22	4,36 3,15 2,99	14,07 11,62 8,21	
Feb 94	5 10 20 40 100 500 2000	3,39 4,06 3,13 3,19 2,28 1,87 1,68	0,11 0,15 0,14 0,19	69,20 50,00 49,40 100,60 54,50 60,00 14,50	17,23 9,60 9,14 12,71 3,27 6,38 5,09	13,53 5,82 7,54 7,70 6,66 10,54 13,17	30,76 15,43 16,67 20,41 9,94 16,92 18,26	26,70 24,90 27,40 24,00 13,30 16,10 15,20	0,86 0,68 0,74 0,88 0,47 0,59 0,51	0,12 0,05 0,06 0,07 0,09 0,08 0,14	0,98 0,73 0,79 0,95 0,56 0,68 0,65	1930,00 1240,00 1400,00 460,00 540,00 520,00	75,67 64,56 73,10 129,42 11,58 26,42 18,66	26,11 9,98 18,58 17,47 5,65 10,83 8,49	101,78 74,55 91,68 146,89 17,23 37,25 27,15	15,00 12,20 11,30 13,10 20,70 14,60 18,30	7,27 11,44 11,13 13,00 7,79 8,15 7,52	2.91 2.31 2.18 2.52 2.85 3,48 3,71	10,18 13,75 13,31 15,53 10,64 11,63 11,22	
Monat	H.0.Sed.(cm)	Ni-WS (ng/l)	Ni-L (mg/kg)	Ni-T (mg/kg)	G(mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/l)	Zn-T (g/kg)	Zn-L (g/kg)	G (g/kg)	Mr-WS (µg/l)	Mn-L (g/kg)	Mn-T (g/kg)	G (g/kg)	AFL (g/kg)	AI-T (g/kg)	G (g/kg)
Feb 93	5 10 20 40	325,40 366,10 379,70 366,10	32,52 59,13 60,61 148,53	15,47 20,60 22,92 29,92	47,99 79,74 83,53 178,45	2,25 2,00 1,96 1,51	11,49 8,21 7,91 8,98	20,70 21,91 16,89 20,69	32,19 30,12 24,79 29,67		0,08 0,17 0,30 0,68	0,59 0,97 1,65 3,02	0,67 1,14 1,96 3,70		0,66 0,71 0,62 0,81	0,18 0,20 0,14 0,19	0,83 0,91 0,76 1,00	6,99 6,11 6,15 5,64	58,85 87,04 43,67 58,24	65,84 93,15 49,82 63,89
Mai 93	5 10 20 40	567,70 454,20 505,80 558,30								8840,00 4890,00 7800,00 8770,00										
Sep 93	5 10 20 40	1102,00 1400,00 1400,00 1176,00	11,71 266,71 58,07 9,29	7,03 52,20 29,89 11,54	18,74 318,91 87,95 20,83	21,24 16,21 26,06 26,06	54,47 66,20 41,18 46,25	4,03 11,79 6,53 5,58	58,50 77,99 47,71 51,82	3790,00 24200,00 28500,00 3160,00	0,51 0,27 0,21 0,05	0,36 1,20 4,43 0,19	0,87 1,47 4,64 0,23	218,00 221,00 230,00 232,00	1,55 2,42 3,61 0,84	0,07 0,21 0,14 0,10	1,62 2,63 3,74 0,94	9,35 18,93 13,91 11,93	15,94 26,74 21,98 9,23	25,29 45,67 35,89 21,15
Nov 93	200 500 800	601,20 560,90 586,30	2,72 3,27 1,89	19,08 2,37 19,26	21,80 5,63 21,14	10,47 2,09 0,83	19,40 12,73 8,65	13,98 8,69	19,40 26,71 17,34		71,18 34,92					0,25 0,30 0,34			50,24 91,94 29,74	
Feb 94	5 10 20 40 100 500 2000	583,90 551,70 588,50 579,30 485,50 480,50 545,90	16,52 22,06 25,55 25,66 19,00 21,03 21,29	10,00 11,98 10,21 12,96 10,01 20,40 12,31	26,52 34,04 35,75 38,62 29,02 41,44 33,61	7,58 6,06 5,22 5,10 20,70 6,85 8,12	25,17 25,90 29,92 32,23 14,99 15,47 13,04	10,20 10,07 10,30 12,61 10,37 19,44 11,35	35,37 35,97 40,22 44,84 25,36 34,91 24,39	9760,00 8540,00 11360,00 857,00 1840,00 900,00	0,04 0,06 0,07 0,04 0,03 0,05 0,04	0,60 0,63 0,97 0,79 0,13 0,19 0,19	0,64 0,69 1,04 0,84 0,16 0,24 0,22	1,97 1,63 1,78 2,42 1,60 0,81 1,19	1,07 1,89 1,77 2,13 1,10 1,27 1,07	0,12 0,08 0,12 0,18 0,11 0,16 0,21	1,19 1,97 1,89 2,31 1,20 1,44 1,28	4,79 7,33 8,56 7,35 4,50 5,34 4,73	24,67 26,43 33,41 33,96 34,19 62,48 38,12	29,46 33,76 41,97 41,31 38,70 67,81 42,85
	I	EFWS = Met	alikonzentratio	n in der Wasse	ersäule	EFT = Elemei	ntkonzentratic	n nach Totalau	fschluß	EHL = Eleme	ntkonzentratio	n nach Leachin	g	G = Gesamto	ehalt im Schv	webstoff (Total ·	Leaching)			

Gesa	mtdaten	Boder	nwasse	r - SPM	- POC	- Schwei	rmetal	le (Total	l u. Lea	ching) S	tation	12a									Tal
Monat	H.ü.Sed.(cm) S	SPM (mg/l)	POC (mg/l)	Pb-WS(ng/l)	Pb-L (mg/kg	) Pb-T (mg/kg)	G (mg/kg)	Cd-WS (ng/	) Cd-L (mg/kg	) Cd-T (mg/kg)	G (mg/kg)	Cu-WS(ng/l)	Cu-L (mg/kg	) Cu-T (mg/kg)	G (mg/kg)	Co-WS (ng/	l) Co-L (mg/k	g) Co-T ( <b>mg/k</b> g	g) G (mg/kg)		
Feb 93	5 10 20 40	2,50 0,29 0,58 0,41	0,47 0,20 0,23 0,23	95,50 50,00 45,00 42,40	77,42 132,06 191,86 121,95	21,42 34,15 36,36 21,46	98,84 166,20 228,23 143,41	13,60 17,20 19,00 16,60	0,70 1,85 2,46 1,90	0,18 1,15 0,71 0,66	0,88 3,00 3,17 2,56	3920,00 3920,00 4110,00 3060,00	179,62 342,51 891,60 548,05	35,09 70,73 99,74 53,90	214,71 413,24 991,34 601,95	27,70 20,60 17,60 22,10	7,47 12,54 11,60 9,76	1,76	9,24 12,54 11,60 9,76		
Mai 93	5 10 20 40			92,50 145,10 109,70 109,70				66,10 38,40 37,30 50,30				990,00 830,00 870,00 920,00				11,50 10,60 11,50 6,60					
Sep 93	5 10 20 40	0,64 1,49 0,75 2,02	0,50 0,16 0,27	386,00 70,70 141,40 141,40	241,90 74,34 43,45 36,04	16,65 2,51 3,63 9,13	258,55 76,86 47,08 38,94	29,60 28,30 25,00 49,60	0,47 1,75 2,03 1,30	0,30 0,04 0,08 0,40	0,76 1,79 2,12 1,70	9000,00 4160,00 4900,00 5340,00	79,28 5,72 45,19 26,19	13,22 2,49 4,83 2,96	92,50 8,22 50,02 29,15	360,50 308,60 325,90 288,90	3,19 0,44 0,41 1,19	2,68 0,33 0,28	5,88 0,77 0,69 1,19		
Nov 93 Feb 94	600 1000 100 500 2000	0,37 0,40 1,99 1,34 1,36		96,70 86,80 72,70 45,50 32,70	7,92 15,59 6,16 6,96 5,35	153,40 216,38 9,63 7,88 4,87	161,32 231,97 15,80 14,84 10,22	11,90 16,10 14,40 16,30 12,10	1,04 1,59 0,55 0,57 0,52	4,07 9,66 0,10 0,10 0,06	5,12 11,26 0,65 0,67 0,58	750,00 740,00 550,00 480,00 570,00	23,64 49,82 11,78 18,64 12,43	10,66 14,73 7,35 7,97 5,87	34,30 64,56 19,13 26,61 18,30	9,60 14,30 23,20 8,54 8,50	4,38 8,61 8,65 7,35 6,31	2,05 3,80 3,54 3,52 4,14	6,44 12,41 12,19 10,87 10,45		
Monat	H.ü.Sed.(cm) N	li-WS (ng/l)	Ni-L (mg/kg)	Ni-T (mg/kg)	G (mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/l)	Zn-L (g/kg)	Zn-T (g/kg)	G (g/kg)	Mn-WS (µg/l)	Mn-L (g/kg)	Mr⊦T (g/kg)	G (g/kg)	AHL (g/kg)	A⊩T (g/kg)	G (g/kg)	
Feb 93	5 10 20 40	278,00 375,10 375,10 366,10	21,54 33,10 57,14 30,24	15,03 27,10 27,08 18,83	36,57 60,20 84,23 49,07	2,40 1,46 1,28 0,99	2,39 6,97 7,52 6,15	20,65 16,06 20,35 14,80	23,04 23,03 27,87 20,96		0,40 0,29 2,42 0,73	0,11 0,20 0,39 1,38	0,52 0,49 2,82 2,10		0,34 0,51 0,48 0,44	0,13 0,07 0,16 0,09	0,47 0,58 0,65 0,53	2,17 9,03 5,60 6,98	54,21 313,51 348,39 188,03	56,39 322,54 353,99 195,01	
Mai 93	5 10 20 40	591,70 511,00 541,70 550,00							Ŧ	9970,00 12350,00 7020,00 8480,00											
Sep 93	5 10 20 40	916,60 789,40 741,70 709,90	17,29 2,56 2,81 4,21	12,63 6,40 4,71 5,74	29,92 8,96 7,52 9,95	40,00 39,20 39,86 17,30	52,69 24,35 43,37 19,83	13,64 2,44 1,76 1,22	66,33 26,79 45,13 21,05	9000,00 4160,00 4900,00 5340,00	0,25 0,09 0,19 0,16	0,07 0,11 0,01 0,01	0,32 0,20 0,20 0,18	270,00 462,00 488,00	0,44 0,36 0,31 0,23	0,05 0,02 0,01 0,01	0,49 0,37 0,33 0,24	13,09 4,71 2,93 3,97	38,78 3,58 1688,16 2,80	51,86 8,29 1691,09 6,77	
	600 1000 100 500 2000	636,00 688,20 659,10 488,10 530,80	2,33 3,11 19,87 17,01 16,91	19,26 32,23 10,63 12,45 8,88	21,59 35,34 30,50 29,46 25,79	2,88 0,81 35,46 5,89 4,45	9,34 15,04 15,21 12,21 10,43	8,40 11,37 12,62 8,32	17,74 15,04 26,58 24,83 18,75	1360,00 2170,00 1440,00	0,19 0,17 0,15	65,30 0,04 0,02 0,02	0,23 0,20 0,17	1,49 1,33 3,05 1,24 1,00	1,17 1,02 0,87	0,18 0,19 0,18 0,12 0,07	1,35 1,14 0,94	4,67 4,40 3,81	64,07 65,30 45,94 49,77 32,77	50,61 54,17 36,58	
			ì																		
	E	HWS = Me	tallkonzentratio	on in der Was	sersäule	EI-T = Elemer	ntkonzentrati	on nach Totala	ufschluß	EHL = Eleme	ntkonzentrati	on nach Leach	ing	G = Gesamtg	ehait im Sch	webstoff (Tota	I + Leaching)				

. .

Tab. 2

Gesam	ntdater	Boden	wasser	- SPM -	Schwe	ermetall	e (Total	l u. Leac	ching) \$	Station	12b									т
Monat	Tiefe	SPM (mg(l)	Pb-WS(ng/l)	Pb-L (mg/kg)	Pb-T (mg/kg)	G (mg/kg)	Cd-WS (ng/l)	Cd-L (mg/kg) (	Cd-T (mg/kg)	G (mg/kg)	Cu-WS(ng/l)	Cu-L (mg/kg)	Cu-T (mg/kg)	G (mg/kg)	Co-WS (ng/l)	Co-L (mg/kg)	Co-T (mg/kg)	G (mg/kg)		
Feb 93	5 10 20 40	11,08 0,51 0,727 0,34	43,10 169,80 58,50 94,30	139,08 151,76 171,39 172,06	11.10 11,45 23,33 14,88	150,18 163,22 194,72 186,94	16,80 13,90 16,80 16,40	0,67 1,16 1,55 1,59	0,03 0,10 0,31 0,15	0,70 1,25 1,87 1,74	980,00 2620,00 2100,00 2340,00	76,22 529,61 497,11 492,35	13,99 28,82 24,62 29,56	90,21 558,43 521,73 521,91	15,20 22,60 21,90 22,60	13,27 9,41 11,42 12,65	3,30 1,61 2,39 1,88	16,56 11,02 13,81 14,53		
Sep 93	5 10 20 40	1,629 0,599 0,536 0,56	171,40 51,10 63,20 54,10	115,22 40,57 32,65 33,39	11,63 2,85 2,22 1,14	126,85 43,42 34,87 34,53	27,20 23,60 26,10 24,20	0,85 0,67 0,60 0,79	0,10 0,02 0,06 0,46	0,96 0,69 0,66 1,25	1300,00 670,00 1030,00 610,00	37,14 15,53 15,11 7,14	11,68 3,12 2,86 2,02	48,82 18,64 17,98 9,16	219,30 194,70 210,50 210,50	5,18 1,10 0,50 0,16	3,15 0,61 0,27 0,42	8,33 1,71 0,77 0,58		
Feb 94	100 500 2000	0,733 1,896 1,509	43,60 49,10 40,00	32,24 5,56 6,35	18,68 11,73 9,97	50,92 17,29 16,32	12,30 13,10 11,40	0,95 0,55 0,50	0,56 0,09 0,09	1,51 0,64 0,59	520,00 560,00 540,00	45,15 10,95 14,09	17,06 6,69 8,63	62,21 17,65 22,72	8,50 11,00 8,50	13,48 6,32 6,98	5,69 2,55 3,27	19,18 8,86 10,25		
Monat	Tiefe	Ni-WS (ng/l)	Ni-L (mg/kg)	Ni-T (mg/kg)	G (mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/l)	Zn-L (g/kg)	Zn-T (g/kg)	G (g/kg)	Mn-WS (µg/l)	Mn-L (g/kg)	Mn-T (g/kg)	G (g/kg)	AI-L (g/kg)	AI-T (g/kg)	G SPM
Feb 93	5 10 20 40	433,80 329,70 329,70 382,40	29,20 27,45 28,20 44,12	15,43 32,53 28,16 25,35	44,63 59,98 56,35 69,47	5,30 18,42 4,09 5,10	3,93 76,94 41,70 23,21	17,97 14,86 15,93 17,32	21,90 91,80 57,62 40,54	3130,00 7220,00 8070,00 7130,00	0,20 3,24 20,67 6,04	0,08 0,32 0,24 0,53	0,27 3,56 20,91 6,58		0,26 0,62 3,24 1,48	0,17 0,14 0,12 0,14	0,43 0,76 3,36 1,62	2,39 6,26 3,35 1,40	57,00 24,32 58,38 46,27	59,40 30,59 61,73 47,67
Sep 93	2000 5 10 20 40	727,90 616,40 714,80 649,20	27,26 5,51 5,97 3,93	10,75 7,85 5,39 9,91	38,00 13,36 11,36 13,84	29,20 19,56 24,20 21,78	29,23 22,47 20,46 25,62	14,79 1,31 0,69 0,45	44,03 23,78 21,14 26,07	3630,00 2730,00 3140,00 2440,00	4,88 0,09 1,06 0,11	0,05 0,02 0,02 0,02	4,93 0,11 1,08 0,13	274,00 283,00 206,00 152,10	1,77 0,57 0,40 0,29	0,15 0,03 0,01 0,01	1,92 0,60 0,41 0,29	15,74 19,06 4,82 7,03	24,23 12,63 11,70 35,20	39,97 31,70 16,52 42,23
	40 100 500 2000	515,70 540,90 483,00	38,24 15,62 16,14	27,29 10,35 15,87	65,53 25,96 32,01	7,32 6,99 6,35	26,18 10,53 13,25	18,95 9,20 8,90	45,13 19,72 22,15	1310,00 1250,00 1220,00	0,68 0,12 0,12	0,24 0,04 0,05	0,93 0,16 0,17	1,09 1,13 1,11	1,98 0,79 0,83	0,26 0,14 0,18	2,24 0,93 1,01	8,46 3,70 4,14	51,61 23,57 29,51	60,07 27,27 33,65
		E⊢WS = Me	tallkonzentratio	on in der Wass	ersäule	EI-T = Elemo	entkonzentratio	on nach Totalau	rfschluß	EI-L = Elem	entkonzentrati	on nach Leachi	ng	G = Gesam	tgehalt im Sch	webstoff (Total	+ Leaching)			
L												<u></u>								

.

Tab. 3

95,83 0,55 1,27 0,91 - - - - - 0,64 0,83 0,91 0,69 3,21	0,83 0,25 0,19 0,25 0,11 0,11 0,11 0,12 0,13	139,60 150,90 190,80 134,00 402,10 71,80 141,50 61,70 51,10	60,79 160,00 204,17 163,63	24,38 206,79 33,85 11,02	85,17 366,79 238,02 174,65	18,90 16,40 22,10 14,30 52,90 32,10	0,64 1,27 1,85 1,52	0,24 0,28 0,38 0,09	0,88 1,54 2,30 1,62	1290,00 2500,00 3520,00 1700,00	41,43 520,73 384,36 244,18	20,27 53,32 56,86 19,97	61,69 574,06 441,22 264,14	31,50 25,30 30,50 21,90	50,08 11,01 10,77 10,66	0,68 3,52 3,74 2,71	50,77 14,53 14,51 13,37	
- - - 0,64 0,83 0,91 0,69 3,21	0,11 0,11 0,12 0,13	402,10 71,80 141,50 61,70 51,10				52,90 32,10				000.00								
0,64 0,83 0,91 0,69 3,21	0,11 0,11 0,12 0,13	51,10				55,30 46,30				920,00 890,00 1090,00 1040,00				53,30 13,30 14,80 14,80				
3,21	0,15	33,10 66,20 102,30	35,61 27,69 31,42 24,96	4,56 1,44 1,60 1,90	40,17 29,13 33,02 26,86	25,80 23,90 28,10 27,50	0,72 3,31 0,79 1,12	0,56 0,04 0,02 0,07	1,28 3,35 0,81 1,19	1260,00 600,00 1320,00 710,00	23,33 0,23 18,41 11,97	3,83 2,14 2,52 2,39	27,15 2,37 20,93 14,36	93,00 89,50 105,30 96,50	0,93 0,62 0,55 0,54	< 0,22 0,40 0,71	0,93 0,83 0,95 1,25	
5,48 3,40 3,27 2,22 1,96 4,39	0,16 0,15 0,18 0,15	132,70 74,50 80,30 90,20 70,90 38,20 47,30	11,68 9,82 17,23 4,54 4,42 5,68 4,31	8,74 13,26 8,60 12,62 4,83 5,02 3,80	20,42 23,08 25,83 17,15 9,25 10,70 8,11	12,90 29,10 34,80 33,00 11,70 12,10 13,20	1,03 1,02 0,97 0,86 0,49 0,53 0,25	0,09 0,16 0,10 0,15 0,05 0,11 0,04	1,12 1,19 1,07 1,01 0,54 0,64 0,28	1560,00 1470,00 1230,00 1670,00 440,00 480,00 530,00	73,71 63,50 77,22 68,86 5,08 7,42 4,64	21,28 29,65 16,17 25,26 4,63 7,21 3,08	94,99 93,15 93,39 94,12 9,71 14,63 7,72	28,00 29,10 31,90 31,00 20,70 14,60 0,00	8,30 7,09 9,18 11,48 6,10 5,79 2,82	2,85 2,90 2,66 3,54 1,51 1,73 0,70	11,15 9,99 11,84 15,02 7,61 7,51 3,52	
Ni-WS (ng/l)	) Ni-L (mg/kg)	Ni-T (mg/kg)	G (mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/l)	Zn-L (g/kg)	Zn-T (g/kg)	G (g/kg)	Mn-WS (µg/l)	Mn-L (g/kg)	Mn-T(g/kg)	G (g/kg)	AFL (g/kg)	A⊦T (g/kg)	G (g/kg
303,30 338,50 557,70 276,90	13,28 34,86 95,05 33,30	17,35 28,86 24,72 16,57	30,64 63,72 119,77 49,87	18,26 21,50 19,83 16,68	8,62 6,98 7,80 7,65	25,65 16,51 17,82 16,26	34,27 23,50 25,63 23,91	5690,00 8690,00 8850,00 6050,00	0,14 2,42 0,15 1,13	0,42 0,46 1,98 0,11	0,57 2,87 2,13 1,24		0,23 0,76 0,33 0,50	0,35 0,18 0,24 0,12	0,58 0,94 0,57 0,61	4,04 6,45 3,79 6,83	76,99 166,89 155,60 55,35	81,03 173,34 159,39 62,18
738,00 597,20 575,00 566,70								8620,00 6310,00 9470,00 6690,00										
662,30 603,30 767,20 714,80	4,20 4,59 5,29 3,21	8,66 4,29 4,24 5,71	10,86 8,88 9,53 8,92	7,87 6,25 8,27 9,08	24,24 11,72 10,79 13,56	1,88 0,94 1,09 0,87	26,13 12,66 11,88 14,43	2590,00 2480,00 2730,00 2730,00	0,18 0,06 0,07 0,07	0,02 0,02 0,02 0,02	0,20 0,08 0,08 0,09	67,30 60,10 75,30 71,90	1,07 0,60 0,46 0,59	0,04 0,02 0,08 0,12	1,11 0,62 0,54 0,71	11,12 5,18 4,72 6,17	6,94 39,50 149,76 45,31	18,06 44,68 154,4 51,48
724,50 593,10 634,50 597,70 488,10 515,70 566,00	16,45 17,90 21,33 26,93 12,89 17,11 7,10	11,23 10,97 11,73 13,46 7,10 10,63 5,07	27,69 28,87 33,07 40,39 19,98 27,73 12,17	1,82 2,23 2,54 1,27 17,83 13,91 7,52	21,90 14,52 24,47 29,11 10,78 12,18 5,05	11,78 10,77 12,74 14,82 6,11 7,21 3,73	33,67 25,29 37,21 43,93 16,89 19,39 8,78	13270,00 10820,00 9530,00 10860,00 980,00 1100,00 150,00	0,59 0,34 3,40 0,53 0,10 0,11 0,05	0,06 0,06 0,07 0,06 0,02 0,02 0,02	0.65 0.40 3.46 0,59 0,11 0,13 0,11	3,11 3,30 3,18 3,57 1,43 1,17 1,00	1,12 0.76 2,44 2,02 0,74 0,76 0,36	0,12 0,17 0,11 0,25 0,08 0,07 0,04	1,25 0,93 4,30 2,28 0,82 0,83 0,40	4,44 3,21 9,96 5,86 3,59 4,04 1,91	34,24 31,91 43,08 43,49 20,78 23,99 12,97	38,68 35,12 53,04 49,34 24,37 28,04 14,88
	1,96 4,39 Ni-WS (ng/1 303,30 338,50 557,70 276,90 597,20 575,00 562,30 662,30 662,30 662,30 662,30 714,80 593,10 634,50 593,10 634,50 597,70 488,10 515,70 566,00	1,96 4,39 303,30 13,28 338,50 34,86 557,70 95,05 276,90 33,30 738,00 597,20 575,00 566,70 662,30 4,20 603,30 4,59 767,20 5,29 714,80 16,45 593,10 17,90 634,50 21,33 597,70 26,93 488,10 12,89 515,70 17,11 566,00 7,10	1,96   38,20     4,39   47,30     Ni-WS (ng/l)   Ni-L (mg/kg)   Ni-T (mg/kg)     303,30   13,28   17,35     338,50   34,86   28,86     557,70   95,05   24,72     276,90   33,30   16,57     738,00   597,20   575,00     567,70   566,70   666     603,30   4,59   4,29     767,20   5,29   4,24     714,80   3,21   5,71     724,50   16,45   11,23     593,10   17,90   10,97     634,50   21,33   11,73     597,70   26,91   3,46     488,10   12,89   7,10     515,70   17,11   10,63     566,00   7,10   5,07	1,96   38,20   5,68     4,39   47,30   4,31     Ni-WS (ng/l)   Ni-L (mg/kg)   Ni-T (mg/kg)   G (mg/kg)     303,30   13,28   17,35   30,64     338,50   34,86   28,86   63,72     557,70   95,05   24,72   119,77     276,90   33,30   16,57   49,87     738,00   597,20   575,00   566,70     562,30   4,20   6,66   10,86     603,30   4,59   4,29   8,88     767,20   5,29   4,24   9,53     714,80   3,21   5,71   8,92     724,50   16,45   11,23   27,69     593,10   17,90   10,97   28,87     634,50   21,33   11,73   33,07     597,70   26,93   13,46   40,39     488,10   12,89   7,10   19,98     515,70   17,11   10,63   27,73     566,00   7,10   <	1,96   38,20   5,68   5,02     4,39   47,30   4,31   3,80     Ni-WS (ng/l)   Ni-L (mg/kg)   Ni-T (mg/kg)   G (mg/kg)   Fe-WS (ug/l)     303,30   13,28   17,35   30,64   18,26     338,50   34,86   28,86   63,72   21,50     557,70   95,05   24,72   119,77   19,83     276,90   33,30   16,57   49,87   16,68     738,00   597,20   575,00   566,70   566,70     662,30   4,20   6,66   10,86   7,87     7033,30   1,57   49,83   8,27     714,80   3,21   5,71   8,92   9,08     724,50   16,45   11,23   27,69   1,82     593,10   17,90   10,97   2,83   2,23     543,50   21,33   11,73   33,07   2,54     597,70   26,93   13,46   40,39   1,27     488,10   12,89   7,10<	1,96   38,20   5,68   5,02   10,70     4,39   47,30   4,31   3,80   8,11     Ni-WS (ng/l)   Ni-L (mg/kg)   Ni-T (mg/kg)   G (mg/kg)   Fe-WS (µg/l)   Fe-L (g/kg)     303,30   13,28   17,35   30,64   18,26   8,62     338,50   34,86   28,86   63,72   21,50   6,98     557,70   95,05   24,72   119,77   16,68   7,65     738,00   597,20   575,00   566,70   566,70   8,86   6,25   11,72     662,30   4,20   6,66   10,86   7,87   24,24   603,30   4,59   4,29   8,86   6,25   11,72     767,20   5,28   4,24   9,53   8,27   10,79   13,56     724,50   16,45   11,23   27,69   1,82   21,90     593,10   17,90   10,97   28,87   2,23   14,52     634,50   21,33   11,73   33,07   2,54	1,96   38,20   5,68   5,02   10,70   12,10     4,39   47,30   4,31   3,80   8,11   13,20     Ni-WS (ng/l)   Ni-L (mg/kg)   Ni-T (mg/kg)   G (mg/kg)   Fe-WS (µg/l)   Fe-L (g/kg)   Fe-T (g/kg)     303,30   13,28   17,35   30,64   18,26   8,62   25,65     338,50   34,86   28,86   63,72   21,50   6,98   16,51     557,70   95,05   24,72   119,77   19,83   7,80   17,85     738,00   597,20   53,30   16,57   49,87   16,68   7,65   16,26     738,00   597,20   5,29   4,24   9,53   8,27   10,79   1,09     714,80   3,21   5,71   8,92   9,08   13,56   0,67     724,50   16,45   11,23   27,69   1,82   21,90   11,78     593,10   17,90   10,97   28,87   2,23   14,52   10,77     543,10	1,96 38,20 5,68 5,02 10,70 12,10 0,53   4,39 47,30 4,31 3,80 8,11 13,20 0,25   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (µg/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27   338,50 34,86 28,86 63,72 21,50 6,98 16,51 23,50   567,70 95,05 24,72 119,77 19,87 16,68 7,65 16,26 23,91   738,00 597,20 575,00 566,70 566,70 10,86 7,87 24,24 1,88 26,13   662,30 4,20 6,66 10,86 7,87 24,24 1,88 26,13   714,80 3,21 5,71 8,92 9,08 13,56 0,87 14,43   724,50 16,45 11,23 27,69 1,82 21,90 11,78 3,67   587,10 17,90 10,97 28,87 2,23<	1.96   38.20   5.68   5.02   10,70   12,10   0,53   0,11     4,39   47,30   4,31   3,80   8,11   13,20   0,25   0,04     Ni-WS (ng/l)   Ni-L (mg/kg)   Ni-T (mg/kg)   G (mg/kg)   Fe-WS (µg/l)   Fe-L (g/kg)   Fe-T (g/kg)   G (g/kg)   Zn-WS (µg/l)     303,30   13,28   17,35   30,64   18,26   8,62   25,65   34,27   5690,00     338,50   34,86   28,86   63,72   21,50   6,98   16,51   23,50   8890,00     557,70   95,05   24,72   119,77   19,83   7,65   16,26   23,91   6050,00     738,00   567,70   93,30   16,57   49,87   16,68   7,65   16,26   23,91   6050,00     662,30   4,20   6,66   10,86   7,87   24,24   1,88   26,13   2590,00     633,30   4,59   4,29   8,88   6,25   11,72   0,94   12,66   2480,0	1,96 38,20 5,68 5,02 10,70 12,10 0,53 0,11 0,64   4,39 47,30 4,31 3,80 8,11 13,20 0,25 0,04 0,28   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (µg/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-WS (µg/l) Zn-L (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14   338,50 34,86 28,86 63,72 21,50 6,98 16,51 23,60 8690,00 2,42   567,70 95,05 24,72 119,77 19,83 7,80 17,82 25,63 8650,00 0,15   575,00 566,70 666 10,86 7,87 24,24 1,88 26,13 2590,00 0,18   662,30 4,20 6,66 10,86 7,87 24,24 1,88 26,13 2590,00 0,07   71,48 3,21 5,71 8,88 6,25 11,72 0,94 12,66 2490,00	1.96 38.20 5.68 5.02 10,70 12,10 0.53 0,11 0.64 460,00   4,39 47,30 4,31 3.80 8,11 13,20 0.25 0,04 0.28 530,00   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (ug/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-WS (ug/l) Zn-L (g/kg) Zn-T (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42   338,50 34,86 28,86 63,72 21,50 6,98 16,51 23,50 8890,00 2,42 0,46   557,70 95,05 24,72 19,77 19,83 7,80 17,82 25,63 8820,00 0,15 1,98   567,70 95,06 24,72 19,87 19,87 16,68 7,65 16,26 23,91 6050,00 1,13 0,11   738,00 575,00 567,70 6,66 10,86 7,87 24,24 1,88 26,13 2590,00 0,18 <td< td=""><td>1.96 38,20 5,68 5,02 10,70 12,10 0,53 0,11 0,64 480,00 7,42   4,39 47,30 4,31 3,80 8,11 13,20 0,25 0,04 0,28 530,00 4,64   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (ug/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-T (g/kg) G (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42 0,57   338,60 34,86 28,86 63,72 21,50 6,98 16,51 23,50 8890,00 2,42 0,46 2,87   567,70 95,06 24,72 119,77 19,83 7,65 16,26 23,91 6050,00 1,13 0,11 1,24   738,00 557,20 529 4,24 9,87 16,68 7,65 16,26 23,91 6050,00 0,18 0,02 0,20 0,68   767,20 5,29 4,24 9,53 8,27</td><td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08   NFWS (ng/t) NFT (mg/kg) G (mg/kg) Fe-WS (µg/t) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-WS (µg/t) Zn-T (g/kg) G (g/kg) Mn-WS (µg/t)   303.00 13.28 17.35 30.64 18.26 8.62 25.65 34.27 5690.00 0.14 0.42 0.57   338.50 34.86 28.86 63.72 21.50 6.98 16.51 23.50 8690.00 0.14 0.42 0.57   357.70 95.05 24.72 119.77 19.83 7.80 17.62 25.63 8650.00 1.13 0.11 1.24   736.00 575.00 33.30 16.57 49.87 16.68 7.87 24.24 1.88 26.13 2590.00 0.18 0.02 0.02 0.08 60.10 67.30 6310.00</td></td<> <td>1.96 36.20 5.68 5.02 10,70 12,10 0.53 0,11 0.64 460,00 7,42 7,21 14,63   4,39 47,30 4,31 3,80 8,11 13,20 0,25 0,04 0,28 530,00 4,64 3,08 7,72   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (µg/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (µg/l) Mn-L (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42 0.57 0,23   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42 0.57 0,76   557,70 95,06 24,72 119,77 19,83 7,80 17,82 25,63 8650,00 0,15 1,98 2,13 0,33   78,00 57,500 57 49,87 16,68 7,67 24,24 1,88 26,13 2590,00 0,18 0,02<td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480,00 7.42 7.21 14.63 14.63   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530,00 4.64 3.08 7.72 0.00   NHWS (ngh) NH-T (mg/kg) NH-T (mg/kg) G (mg/kg) Fe-WS (ugh) Fe-T (g/kg) G (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (ugh) Mn-L (g/kg) Mn-T (g/k</td><td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.60 5.79   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82   Ni-WS (ng/h) Ni-L (mg/ng) Ni-T (mg/ng) G (mg/ng) Fe-T (g/ng/g) Cr-U (g/ng) Zn-T (g/ng/g) G (g/ng) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Car-U (g/ng/g) Zn-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-T (g/ng/g) G (g/ng/g) Zn-T (g/ng/g) Zn-T (g/ng/g) Zn-T (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-T (g/ng/g) Mm-T (g/ng/g) G (g/ng/g) Zn-T (g/ng/g)<td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 440.00 7.42 7.21 14.63 14.60 5.79 1,73   4,39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70   Ni-WS (ng/) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-L (g/kg) G (g/kg) Zn-WS (ug/h) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mi-WS (ug/h) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-D (g/kg) Ai-D (g/kg)</td><td>1.66 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.80 5.79 1.73 7.51   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70 3.52   NE-WS (rg/l) NE-L (mg/kg) NE-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-WS (ug/l) Mn-L (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) A-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) Zn-L (g/kg) Mn-WS (ug/h) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-Z (g/kg) <t< td=""></t<></td></td></td>	1.96 38,20 5,68 5,02 10,70 12,10 0,53 0,11 0,64 480,00 7,42   4,39 47,30 4,31 3,80 8,11 13,20 0,25 0,04 0,28 530,00 4,64   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (ug/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-T (g/kg) G (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42 0,57   338,60 34,86 28,86 63,72 21,50 6,98 16,51 23,50 8890,00 2,42 0,46 2,87   567,70 95,06 24,72 119,77 19,83 7,65 16,26 23,91 6050,00 1,13 0,11 1,24   738,00 557,20 529 4,24 9,87 16,68 7,65 16,26 23,91 6050,00 0,18 0,02 0,20 0,68   767,20 5,29 4,24 9,53 8,27	1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08   NFWS (ng/t) NFT (mg/kg) G (mg/kg) Fe-WS (µg/t) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-WS (µg/t) Zn-T (g/kg) G (g/kg) Mn-WS (µg/t)   303.00 13.28 17.35 30.64 18.26 8.62 25.65 34.27 5690.00 0.14 0.42 0.57   338.50 34.86 28.86 63.72 21.50 6.98 16.51 23.50 8690.00 0.14 0.42 0.57   357.70 95.05 24.72 119.77 19.83 7.80 17.62 25.63 8650.00 1.13 0.11 1.24   736.00 575.00 33.30 16.57 49.87 16.68 7.87 24.24 1.88 26.13 2590.00 0.18 0.02 0.02 0.08 60.10 67.30 6310.00	1.96 36.20 5.68 5.02 10,70 12,10 0.53 0,11 0.64 460,00 7,42 7,21 14,63   4,39 47,30 4,31 3,80 8,11 13,20 0,25 0,04 0,28 530,00 4,64 3,08 7,72   Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (µg/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (µg/l) Mn-L (g/kg)   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42 0.57 0,23   303,30 13,28 17,35 30,64 18,26 8,62 25,65 34,27 5690,00 0,14 0,42 0.57 0,76   557,70 95,06 24,72 119,77 19,83 7,80 17,82 25,63 8650,00 0,15 1,98 2,13 0,33   78,00 57,500 57 49,87 16,68 7,67 24,24 1,88 26,13 2590,00 0,18 0,02 <td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480,00 7.42 7.21 14.63 14.63   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530,00 4.64 3.08 7.72 0.00   NHWS (ngh) NH-T (mg/kg) NH-T (mg/kg) G (mg/kg) Fe-WS (ugh) Fe-T (g/kg) G (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (ugh) Mn-L (g/kg) Mn-T (g/k</td> <td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.60 5.79   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82   Ni-WS (ng/h) Ni-L (mg/ng) Ni-T (mg/ng) G (mg/ng) Fe-T (g/ng/g) Cr-U (g/ng) Zn-T (g/ng/g) G (g/ng) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Car-U (g/ng/g) Zn-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-T (g/ng/g) G (g/ng/g) Zn-T (g/ng/g) Zn-T (g/ng/g) Zn-T (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-T (g/ng/g) Mm-T (g/ng/g) G (g/ng/g) Zn-T (g/ng/g)<td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 440.00 7.42 7.21 14.63 14.60 5.79 1,73   4,39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70   Ni-WS (ng/) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-L (g/kg) G (g/kg) Zn-WS (ug/h) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mi-WS (ug/h) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-D (g/kg) Ai-D (g/kg)</td><td>1.66 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.80 5.79 1.73 7.51   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70 3.52   NE-WS (rg/l) NE-L (mg/kg) NE-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-WS (ug/l) Mn-L (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) A-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) Zn-L (g/kg) Mn-WS (ug/h) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-Z (g/kg) <t< td=""></t<></td></td>	1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480,00 7.42 7.21 14.63 14.63   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530,00 4.64 3.08 7.72 0.00   NHWS (ngh) NH-T (mg/kg) NH-T (mg/kg) G (mg/kg) Fe-WS (ugh) Fe-T (g/kg) G (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (ugh) Mn-L (g/kg) Mn-T (g/k	1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.60 5.79   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82   Ni-WS (ng/h) Ni-L (mg/ng) Ni-T (mg/ng) G (mg/ng) Fe-T (g/ng/g) Cr-U (g/ng) Zn-T (g/ng/g) G (g/ng) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Car-U (g/ng/g) Zn-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-T (g/ng/g) G (g/ng/g) Zn-T (g/ng/g) Zn-T (g/ng/g) Zn-T (g/ng/g) Mm-WS (ug/h) Mm-T (g/ng/g) G (g/ng/g) Mm-T (g/ng/g) Mm-T (g/ng/g) G (g/ng/g) Zn-T (g/ng/g) <td>1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 440.00 7.42 7.21 14.63 14.60 5.79 1,73   4,39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70   Ni-WS (ng/) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-L (g/kg) G (g/kg) Zn-WS (ug/h) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mi-WS (ug/h) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-D (g/kg) Ai-D (g/kg)</td> <td>1.66 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.80 5.79 1.73 7.51   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70 3.52   NE-WS (rg/l) NE-L (mg/kg) NE-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-WS (ug/l) Mn-L (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) A-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) Zn-L (g/kg) Mn-WS (ug/h) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-Z (g/kg) <t< td=""></t<></td>	1.96 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 440.00 7.42 7.21 14.63 14.60 5.79 1,73   4,39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70   Ni-WS (ng/) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-L (g/kg) G (g/kg) Zn-WS (ug/h) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mi-WS (ug/h) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Mi-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-L (g/kg) Mi-T (g/kg) G (g/kg) Ai-L (g/kg) Ai-D (g/kg) Ai-D (g/kg)	1.66 38.20 5.68 5.02 10.70 12.10 0.53 0.11 0.64 480.00 7.42 7.21 14.63 14.80 5.79 1.73 7.51   4.39 47.30 4.31 3.80 8.11 13.20 0.25 0.04 0.28 530.00 4.64 3.08 7.72 0.00 2.82 0.70 3.52   NE-WS (rg/l) NE-L (mg/kg) NE-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-WS (ug/l) Mn-L (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) A-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) Zn-L (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) M-L (g/kg) A-L (g/kg) Zn-L (g/kg) Mn-WS (ug/h) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Mn-T (g/kg) G (g/kg) Zn-L (g/kg) Zn-Z (g/kg) <t< td=""></t<>

Tab. 4

Gesa	mtdaten	Boden	wasser	- SPM -	POC -	Schwer	metall	e (Total	u. Lea	ching) S	tation 2	230								Та
Monat	H.ü.Sed.(cm)	SPM (mg(l)	POC (mg/l)	Pb-WS(ng/l)	Pb-L (mg/kg)	Pb-T (mg/kg)	G (mg/kg)	Cd-WS (ng/l)	Cd-L (mg/kg	) Cd-T (mg/kg)	G (mg/kg)	Cu-WS(ng/l)	Cu-L (mg/kg	) Cu-T (mg/kg)	G (mg/kg)	Co-WS (ng/l)	Co-L (mg/kg)	) Co-T (mg/kg)	G (mg/kg)	
Feb 93	5 10 20 40	5.648 0,82 0,893 1,143	0,512 0,195 0,193 0,24	410,30 182,60 293,30 490,30	173,71 259,15 259,91 211,11	17,51 39,49 16,24 19,18	191,22 298,63 276,15 230,29	32,90 47,40 21,80 40,00	1,13 0,66 0,90 1,15	0,15 0,22 0,18 0,16	1,26 0,88 1,08 1,31	20210,00 23970,00 23270,00 17150,00	723,09 842,20 899,66 520,47	66,87 112,05 48,91 46,58	789,96 954,24 500,65 567,05	53,30 23,97 34,50 45,70	9,76 13,29 11,76 11,64	4,28 5,48 4,20 4,41	14,04 18,77 15,96 16,05	
Mai 93	5 10 20 40	-		615,40 92,30 38,50 86,50				43,00 34,40 31,10 40,40				15510,00 790,00 740,00 900,00				123,80 14,60 10,60 10,60				
Sep 93	5 10 20 40	0,372 0,288 0,453 0,325	0,29 0,25 0,38 0,29	67,00 88,70 25,60 25,60	47,43 124,87 27,66 196,69	16,51 7,33 9,14 10,83	63,94 132,19 36,80 207,52	29,60 38,60 28,10 32,00	4,17 7,17 4,47 0,33	0,30 0,29 0,19 0,13	4,47 7,46 4,65 0,46	570,00 640,00 660,00 570,00	112,68 147,43 79,11 65,34	9,97 6,77 5,10 5,23	122,65 154,20 84,21 70,57	205,30 216,00 210,70 224,00	11,62 18,10 16,28 10,54	< < <	11,62 18,10 16,28 10,54	
Nov 93	5 10 20 40	3,94 2,988 2,811 1,89	0,09 0,109 0,206 0,223	27,30 33,80 29,90 39,80	11,88 6,79 7,08 7,39	24.05 9,65 12,48 11,67	35,92 16,44 19,56 19,05	11,00 14,40 15,30 10,80	0,98 0,91 0,90 1,07	0,22 0,10 0,13 0,11	1,20 1,01 1,03 1,17	1670,00 870,00 820,00 500,00	61,95 40,33 37,99 30,85	18,37 7,76 9,43 8,25	80,33 48,09 47,43 39,10	32,10 24,10 24,10 27,10	7,34 6,90 7,52 7,98	6,98 4,35 5,01 4,16	14,32 11,26 12,52 12,14	
Feb 94	5 10 20 40 100 500 2000	2,405 2,589 2,401 9,219 4,706 1,571 1,593		360,80 390,00 342,90 553,50 333,90 165,80 217,40	17,15 17,80 20,82 189,50 11,30 6,58 7,60	11,34 12,55 18,78 21,40 26,29 70,61 7,29	28,49 30,36 39,60 210,90 37,59 77,19 14,89	43,90 31,20 39,60 41,80 38,20 37,50 21,80	1,59 1,92 2,19 2,16 0,75 0,39 0,58	0,16 0,21 0,38 0,21 0,44 2,11 0,12	1,75 2,13 2,57 2,37 1,19 2,50 0,70	1020,00 750,00 1460,00 3020,00 500,00 470,00 610,00	91,77 190,22 179,55 249,01 4,48 22,92 27,70	20,15 44,54 42,82 73,18 11,29 8,53 7,37	111,92 234,77 222,37 322,19 15,78 31,45 35,07	31,80 33,70 35,70 43,50 27,40 19,10 10,30	7,14 7,28 9,07 10,04 6,71 3,57 7,06	2,48 2,67 3,13 4,59 2,96 1,82 2,45	9,62 9,95 12,20 14,63 9,67 5,40 9,50	
Monat	H.ü.Sed.(cm)	Ni-WS (ng/l)	Ni-L (mg/kg)	Ni-T (mg/kg)	G (mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/l)	Zn-L (g/kg)	Zn-T (g/kg)	G (g/kg)	Mn-WS (µg/l)	Mn-L (g/kg)	Mn-T (g/kg)	G (g/kg)	A⊢L (g/kg)	AI-T (g/kg)	G (g/kg)
Feb 93	\$ 10 20 40	597,20 490,10 395,50 608,50	25,51 32,68 29,45 35,70	16,90 25,22 21,23 19,79	42,41 57,90 50,68 55,49	56,64 22.90 28,80 47,37	18,04 10,84 15,88 26,47	23,15 23,39 18,97 22,15	41,19 34,23 34,85 48,61	24670,00 24910,00 23850,00	0,27 1,16 1,15 0,67	0,17 0,29 0,15 0,12	0,44 1,45 1,30 0,79		0,63 0,90 0,90 0,57	0,21 0,32 0,17 0,20	0,84 1,22 1,07 0,76	5,29 21,85 6,31 17,44	60,46 67,76 58,76 65,61	65,75 89,61 65,07 83,05
Mai 93	5 10 20 40	1024,30 531,60 511,00 541,90								24080,00 7800,00 9040,00 8680,00										
Sep 93	5 10 20 40	700,80 717,40 704,10 700,80	26,49 56,20 11,98 13,76	11,67 8,23 7,44 15,38	38,15 64,43 19,42 29,15			4,87 11,60 5,36 6,74		2320,00 2420,00 2110,00 2140,00		0,04 0,03 0,09 0,03		97,00 5,20 2,38 4,09	6,30 4,90 6,52	0,36 0,11 0,20 0,16	6,65 0,11 5,10 6,68	9,32 8,78 6,99	8,35 7,68 9,06 1,87	17,66 7,68 17,84 8,85
Nov 93	5 10 20 40	662,30 611,20 614,30 648,40	1,86 1,90 2,09 2,42	14,68 11,36 12,61 13,04	16,54 13,25 14,70 15,46	5,59 1,93 1,69 1,33	13,85 14,13 14,38 16,20	16,83 13,60 15,39 16,16	30,68 27,73 29,77 32,36	1470,00 890,00 710,00		0,07 0,05 0,06 0,05		2,54 4,19 2,32 2,71		0,25 0,15 0,22 0,16			68,37 45,56 63,14 52,61	
Feb 94	5 10 20 40 100 500 2000	612,40 574,20 578,00 623,90 562,70 604,80 562,70	18,69 24,53 42,13 23,91 1,65 2,12 2,08	10,69 12,02 18,56 16,49 10,31 11,59 11,51	29,38 36,55 60,69 40,40 11,96 13,71 13,58	23,41 24,58 24,81 28,68 20,48 6,33 2,15	17,66 13,95 27,96 19,54 4,03 7,82 14,42	12,90 15,02 12,60 30,11 12,22 7,99 8,48	30,56 28,98 40,56 49,64 16,24 15,81 22,89	10690,00 3160,00 10180,00 20780,00 2790,00 2700,00 1450,00	0,54 1,08 1,33 0,58 0,33 0,21 0,68	0,06 0,09 0,10 0,10 0,86 3,62 0,02	0,60 1,16 1,43 0,69 1,19 3,82 0,70	4,56 1,19 2,56 1,84 0,38 0,84 0,89	0,73 0,58 1,12 0,37 0,85 1,16 2,05	0,13 0,13 0,26 0,19 0,13 0,13 0,10	0,85 0,71 1,38 0,56 0,98 1,29 2,15	4,05 4,46 5,26 5,66 8,71 6,32 6,02	35,89 38,25 29,05 49,08 39,40 30,80 26,17	39,94 42,71 34,30 54,74 48,11 37,13 32,18
	E	E⊦WS ≂ Meta	allkonzentratio	n in der Wasse	rsäule	E⊦T = Elemen	tkonzentratic	n nach Totalau	ifschluß	EI-L = Eleme	ntkonzentratio	n nach Leachi	ng	G = Gesamtg	ehalt im Schv	webstoff (Total ·	+ Leaching)			

Tab. 5

Gesam	Gesamtdaten Bodenwasser - SPM - POC - Schwermetalle (Total u. Leaching) Station 23a Tab												Tab. 6							
Monat	Tiefe	SPM (mg(i)	POC (mg/i)	Pb-WS (ng/l)	Pb-L (mg/kg)	Pb-T (mg/kg)	G (mg/kg)	Cd-WS (ng/l)	Cd-L (mg/kg	g) Cd-T (mg/kg)	G (mg/kg)	Cu-WS(ng/l)	Cu-L (mg/kg	) Cu-T (mg/kg)	G (mg/kg)	Co-WS (ng/l)	Co-L (mg/kg	) Co-T (mg/kg)	G (mg/kg)	
Feb 93	5 10 20 40	0,665 0,61 0,568 0,513	0,257 0,219 0,236 0,209	162,00 53,30 164,10 131,30	134,89 170,82 258,98 159,26	28,42 13,11 20,25 13,65	163,31 183,93 279,23 172,90	18,30 19,50 14,50 15,90	3,37 1,90 2,75 2,12	0,54 0,87 0,43 0,29	3,91 2,77 3,17 2,42	2820,00 3110,00 2840,00 3000,00	253,38 460,49 454,00 282,85	40,00 20,33 51,58 17,74	293,38 480,82 1263,03 300,58	22,10 26,90 31,90 29,40	11,13 11,48 13,38 12,67	< 4,57 3,64 2,46	11,13 15,23 17,02 15,13	
Mai 93	5 10 20 40			94,20 134,69 75,00 28,80				37,60 38,40 38,40 46,10				740,00 940,00 760,00 760,00				17,90 13,00 10,60 8,90				
Sep 93	5 10 20 40	4,095 1,164 1,063	1,9 0,24 0,23	- 336,90 37,40 19,70	108,96 23,80 22,30	9,04 1,15 1,82	118,00 24,94 24,11	27,80 27,80 33,70	0,89 1,75 1,56	0,07 0,10 0,10	0,96 1,86 1,66	550,00 570,00 900,00	44,47 24,14 0,54	7,56 2,38 4,76	52.03 26,52 5,30	- 309,30 266,70 272,00	- < 0,97 <	2,17 0,28 0,32	2,17 1,25 0,32	
Nov 93	5 10 20 40	3,035 2,19 1,38 1,215	0,168 0,285 0,3 0,345	33,80 32,50 48,10 36,40	8,18 7,36 5,58 7,45	13,83 15,44 35,12 31,57	22,01 22,80 40;70 39,02	19,50 14,80 35,00 17,90	0,85 0,90 0,79 1,00	0,24 0,32 0,44 0,47	1,09 1,23 1,23 1,48	1960,00 1080,00 720,00 670,00	96,44 53,70 20,65 26,75	18,70 10,06 29,46 17,73	115,14 63,76 50,11 44,48	20,90 14,50 20,90 17,70	7,47 7,53 5,04 7,23	3,97 3,41 10,97 7,88	11,45 10,95 16,01 15,10	
Feb 94	5 10 20 40 100 500 2000	2,57 1,938 2,248 4,028 1,466 1,269 1,345	0,025 0,021 0,023 0,059	116,40 278,00 168,10 282,40 329,40 67,20 181,50	14,94 18,35 22,73 115,20 9,51 12,14 7,05	14,55 15,86 14,60 12,44 5,78 4,53 9,81	29,49 34,21 37,32 127,63 15,29 16,67 16,85	26,50 40,00 31,60 34,70 43,20 27,70 23,20	1,01 1,44 1,76 1,81 0,85 0,46 0,28	0,14 0,21 0,21 0,17 0,05 0,11 0,14	1,15 1,65 1,97 1,98 0,89 0,56 0,41	1640,00 1450,00 1340,00 1340,00 420,00 490,00 620,00	114,94 125,58 170,59 103,13 25,31 21,30 16,83	29,01 34,84 34,15 31,45 5,30 4,71 14,54	143,95 160,42 204,73 134,58 30,62 26,01 31,37	30,50 25,40 24,40 27,40 13,70 17,60 16,60	7,28 6,83 8,29 8,21 7,53 4,77 3,65	2,36 2,14 2,38 3,30 1,53 1,53 1,34 2,61	9,64 8,96 10,68 11,51 9,06 6,11 6,26	
Monat	Tiefe	Ni-WS (ng/l)	Ni-L (mg/kg)	Ni-Ť (mg/kg)	G (mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/l)	Zn-L (g/kg)	Zn-T (g/kg)	G (g/kg)	Mn-WS (µg/l)	Mn-L (g/kg)	Mn-T (g/kg)	G (g/kg)	AI-L (g/kg)	AI-T (g/kg)	G (g/kg)
Feb 93	5 10 20 40	361,60 275,70 255,40 287,00	35,64 44,75 102,29 79,73	14,03 17,05 27,46 21,83	49,67 61,80 129,75 101,56	1,82 13,50 23,57 14,14	4,71 6,81 10,16 3,97	13,75 15,56 20,87 13,12	18,46 22,36 31,03 17,09		1,57 2,47 3,99 2,83	0,15 0,35 0,44 0,29	1,72 2,82 4,43 3,13		0,33 0,45 0,86 0,33	0,10 0,09 0,15 0,10	0,43 0,54 1,01 0,43	5,12 5,50 5,49 6,44	51,35 65,82 77,68 48,47	56,48 71,31 83,17 54,91
Mai 93	5 10 20 40	650,30 619,40 629,70 619,40								6270,00 8150,00 6320,00 7460,00										
Sep 93	5 10 20 40	823,00 776,90 760,30	- 24,64 4,98 1,51	8,29 4,29 3,33	- 32,93 9,27 4,84	ы	- 121,15 208,62 243,39	- 27,41 5,79 18,78	- 148,56 214,41 262,17	2390,00 2390,00 2320,00	0,30 0,14 0,19	0,51 0,01 1,04	0,82 0,15 1,22	29,50 100,00 127,80	0,59 1,17 2,30	0,08 0,02 0,11	- 0,67 1,19 2,40	- 14,26 3,98 2,06	31,73 3,80 29,45	46,00 7,78 31,52
Nov 93	5 10 20 40	637,50 529,20 629,80 631,30	2,15 2,13 1,57 2,18	14,28 13,36 27,14 21,36	16,43 15,49 28,72 23,54	1,85 1,23 4,62 2,29	15,30 15,56 10,80 17,37	17,08 17,74 33,08 26,52	32,38 33,30 43,88 43,89	1670,00 710,00 820,00 640,00		6,65 8,98 7,75 7,58		1,72 17,80 2,54 2,42		0,19 0,18 0,21 0,17			51,63 49,36 32,04 42,30	
Feb 94	5 10 20 40 100 500 2000	525,80 566,50 497,60 493,70 539,70 589,50 593,30	17,27 49,32 103,55 17,56 37,73 2,61 3,22	9,98 13,22 16,68 11,46 8,13 9,94 18,30	27,25 62,55 120,23 29,02 45,87 12,55 21,52	24,73 14,98 14,16 16,15 2,61 6,83 17,44	20,35 19,30 25,49 18,06 15,37 11,17 8,90	11,00 12,13 13,65 18,23 6,42 5,06 11,93	31,35 31,42 39,14 36,28 21,79 16,24 20,83	13700,00 27080,00 18110,00 10690,00 1960,00 1580,00 2450,00	0,64 1,00 1,32 0,59 0,27 0,18 0,23	0,06 0,10 0,07 0,02 0,02 0,05	0,69 1,10 1,43 0,66 0,29 0,20 0,28	1,66 1,78 1,86 1,73 0,74 0,78 0,82	0,83 0,83 1,08 0,59 1,34 1,30 1,25	0,12 0,14 0,12 0,16 0,06 0,05 0,14	0,95 0,97 1,20 0,75 1,40 1,35 1,38	4,01 4,04 4,25 4,61 5,36 10,05 8,61	26,80 26,83 32,48 43,52 23,47 17,96 29,46	30,81 30,86 36,73 48,13 28,83 28,00 38,07
		E⊦WS = Meta	allkonzentratio	on in der Wasse	ersăule	EFT = Elemen	tkonzentratio	n nach Totalau	fschluß	EFL = Eleme	ntkonzentratio	n nach Leachir	ng	G = Gesamtg	ehalt im Schv	vebstoff (Total	+ Leaching)			

.

Gesamtdaten Bodenwasser - SPM - Schwermetalle (Total u. Leaching) Station 23b     Monal   Hü.Sed(cm)   SPM (mgl)   Pb-WS(ngh)   Pb-T (mg/kg)   G (mg/kg)   Cd-WS (ng/kg)   Cu-WS (ng/h)   Cu-WS (ng/h)	
Monat H.ü.Sed.(cm) SPM (mg(l) Pb-WS(ng/l) Pb-L (mg/kg) G (mg/kg) Cd-WS (ng/l) Cd-L (mg/kg) G (mg/kg) Cu-T (mg/kg) Cu-T (mg/kg) G (mg/kg) Cu-T (mg/kg) <th>Tab 7</th>	Tab 7
Feb 93 5 0,553 223,60 181,56 15,42 196,93 17,70 1,97 0,19 2,15 601,00 423,15 22,06 445,21 28,60 11,39 2,60 14,00   10 0,27 240,00 185,19 19,44 204,81 17,30 2,15 0,71 2,85 5470,00 389,89 25,00 12,59 2,60 14,00   20 0,423 155,90 259,10 22,51 281,56 17,30 2,88 0,34 3,22 4720,00 697,16 36,64 733,81 25,20 13,24 2,98 16,22   40 0,265 184,60 221,51 17,32 238,87 15,50 2,94 1,05 4,00 3760,00 459,25 24,91 484,15 35,30 12,83 3,40 16,22   40 0,265 184,60 221,51 17,32 23,30 0,13 0,11 0,25 490,00 11,91 6,61 17,93 43,90 1,45 1,45   20 0,39 13,80 1,38 2,62 3,9	140.1
10 0.27 240,00 185,19 19,44 204,81 17,30 2,15 0,17 2,85 2470,00 443,21 28,60 11,39 2,60 14,00   20 0.423 155,90 259,10 22,51 281,56 17,30 2,86 0,34 3,22 4720,00 697,16 36,64 733,81 25,20 13,24 2,98 16,22   40 0.265 184,60 221,51 17,32 28,87 15,50 2,94 1,05 4,00 3760,00 459,25 24,91 484,15 35,30 12,83 3,40 16,22   40 0.265 184,60 221,51 17,32 238,67 15,50 2,94 1,05 4,00 3760,00 459,25 24,91 484,15 35,30 12,83 3,40 16,23   Sep 93 5 0,485 49,50 0.32 2,87 3,19 20,50 0,07 0,10 0,17 1200,00 22,32 4,25 26,57 42,40 1,17 <	
Sep 93 5 0,485 49,50 0,32 2,87 3,19 20,50 0,07 0,10 0,17 1200,00 22,32 4,25 26,57 42,40 1,17 <	
Hüllsed.(cm) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-L (g/kg) Fe-L (g/kg) G (g/kg) Zr-T (g/kg) G (g/kg) Mn-WS (µg/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Al-L (g/kg) Fe-T (g/kg) G (g/kg) Zr-WS (µg/l) Zr-T (g/kg) G (g/kg) Mn-WS (µg/l) Mn-L (g/kg) Mn-T (g/kg) Al-L (g/kg) Al-T (g/kg) G (g/kg) G (g/kg) C (g/kg) Al-T (g/kg) G (g/kg) Al-T (g/kg) C	
Monat H.ü.Sed.(cm) Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (µg/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-WS (µg/l) Zn-L (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (µg/l) Mn-L (g/kg) Mn-T (g/kg) G (g/kg) Al-L (g/kg) Al-L (g/kg) G (g/kg)	
Monat H.ü.Sed.(cm) Ni-WS (ng/l) Ni-L (mg/kg) Ni-T (mg/kg) G (mg/kg) Fe-WS (µg/l) Fe-L (g/kg) Fe-T (g/kg) G (g/kg) Zn-WS (µg/l) Zn-L (g/kg) Zn-T (g/kg) G (g/kg) Mn-WS (µg/l) Mn-L (g/kg) Mn-T (g/kg) G (g/kg) Al-L (g/kg) Al-T (g/kg) G (g/kg)	
Feb 93   5   381.90   43.94   17.18   61.12   25.63   6.68   17.76   24.44   0.63   0.12   0.74   0.56   0.11   0.67   5.28   528.45   533.72     10   252.50   32.96   32.22   65.19   18.99   7.66   24.16   31.82   0.75   0.27   1.02   0.56   0.13   0.69   12.23   264.23   276.45     20   343.50   107.80   24.59   132.29   20.26   3.18   0.95   0.14   1.09   7.37   164.57   171.94     40   325.40   33.58   39.25   72.83   23.33   9.21   24.58   33.79   1.33   0.27   1.60   0.74   0.12   0.86   86.55   298.34   38.92   1.93   0.27   1.60   0.74   0.12   0.86   88.65   298.34   38.92   1.33   0.27   1.60   0.74   0.12   0.86   88.85   298.34   38.93   39.25   1	
Sep 93   5   603,60   4,67   8,66   13.33   11.22   0,40   1760,00   0,12   0,43   0,01   0,44   2,02   2,61   4,63     10   546,70   7,90   8,91   16,81   10,30   0,75   1840,00   0,13   0,46   0,01   0,47   3,52   1,26   4,78     20   575,20   0,79   7,72   8,51   6,30   4,49   2060,00   0,01   18,77   0,01   0,01   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69   1,69	
Feb 94   100   556,00   14,04   9,63   23,67   6,84   11,86   8,06   19,92   1840,00   0.24   0,03   0,27   1,30   0,94   0,11   1,05   4,16   21,74   25,90     500   513,30   9,19   10,19   19,37   5,61   8,27   5,48   13,75   1530,00   0,17   0,03   0,20   1,16   0,67   0,10   0,77   39,72   19,91   59,63     2000   618,90   23,93   13,84   37,77   3,74   12,16   12,08   24,24   1320,00   0,18   0,21   0,39   0,94   1,03   0,12   1,15   4,67   32,02   19,863	
EI-WS = Metallikonzentration in der Wassersäule EI-T = Elementkonzentration nach Totalaufschluß EI-L = Elementkonzentration nach Leaching G = Gesamtgehalt im Schwebstoff (Total + Leaching)	

.

Gesam	Gesamtdaten Bodenwasser - SPM - POC - Schwermetalle (Total U. Leaching) Station 23C														lab					
Monat	Tiefe	SPM (mg(l)	POC (mg/kg)	Pb-WS(ng/l)	Pb-L (mg/kg)	Pb-T (mg/kg)	G (mg/kg)	Cd-WS (ng/i)	Cd-L (mg/kg)	Cd-T (mg/kg)	G (mg/kg)	Cu-WS (ng/l)	Cu-L (mg/kg)	Cu-T (mg/kg)	G (mg/kg)	Co-WS (ng/l)	Co-L (mg/kg)	Co-T (mg/kg)	G (mg/kg)	
Feb 93	5 10 20 40	0,21 0,185 0,238 0,212	0,129 0,16 0,141 0,173	113,30 133,30 137,80 137,80	200,48 204,32 256,72 195,75	17,71 27,19 23,91 24,91	218,10 231,35 280,67 220,66	17,80 17,30 15,30 18,80	1,29 2,05 2,44 1,84	0,44 0,62 0,74 0,01	1,73 2,70 3,19 1,85	3340,00 3750,00 3500,00 2690,00	576,19 866,49 995,20 570,75	23,05 61,08 38,20 31,32	599,05 927,57 1073,11 602,08	20,00 19,30 17,10 20,70	12,90 11,95 10,13 11,37	2,57 4,38 3,78 3,44	15,48 16,32 13,91 14,81	
Mai 93	5 10 20 40			88,90 38,90 53,30 55,60				47,40 38,50 49,40 54,30				940,00 940,00 860,00 900,00				27,90 18,60 27,10 25,00				
Sep 93	5 10 20 40	1,131 0,542 0,5 2,189	0,5 0,27	205,70 30,50 28,60 55,20	135,46 16,42 19,20 42,39	6,00 1,16 1,71 2,00	141,46 17,58 20,91 44,39	24,40 20,90 19,80 18,80	0,85 0,79 1,06 0,79	0,15 0,21 0,07 0,04	0,99 1,00 1,13 0,83	1431,00 820,00 820,00 2560,00	592,40 25,09 31,60 67,15	25,60 3,09 4,00 6,05	618,00 28,18 35,60 73,21	22,50 18,50 22,50 11,90	1,28 1,01 1,72 1,53	0,00 0,16 0,27 0,24	1,28 1,18 1,99 1,78	
Nov 93	5 10 20 40	1,095 1,32 0,67 0,925		20,80 10,40 105,20 58,30	6,86 6,13 7,48 6,25	21,53 29,55 30,10 17,63	28,38 35,67 37,58 23,88	16,50 16,30 11,50 9,90	0,50 0,49 1,00 0,57	0,50 0,81 0,73 0,57	1,01 1,30 1,73 1,14	1990,00 2440,00 480,00 540,00	83,74 68,64 25,03 19,97	16,38 15,22 9,18 6,31	100,13 83,86 34,21 26,28	19,30 20,90 28,70 25,50	4,51 5,13 5,67 3,96	2,73 2,96 3,24 2,12	7,24 8,09 8,91 6,08	
Feb 94	100 500 1300	1,028 1,306 1,523		82,90 69,50 98,60	11,47 7,98 8,70	7,99 7,11 18,80	19,46 15,08 27,50	30,50 30,50 35,40	0,87 0,87 0,93	0,05 0,09 0,11	0,92 0,96 1,04	410,00 430,00 480,00	14,15 23,37 26,50	6,47 6,94 8,57	20,62 30,31 35,08	17,60 19,10 11,70	5,75 5,63 5,68	1,32 2,18 2,66	7,07 7,81 8,34	
Monat	Tiefe	Ni-WS (ng/l	) Ni-L (mg/kg)	Ni-T (mg/kg)	G (mg/kg)	Fe-WS (µg/l)	Fe-L (g/kg)	Fe-T (g/kg)	G (g/kg)	Zn-WS (µg/i)	Zn-L (g/kg)	Zn-T (g/kg)	G (g/kg)	Mn-WS (µg/l)	Mn-L (g/kg)	Mn-T (g/kg)	G (g/kg)	AFL (g/kg)	A⊦T (g/kg)	G (g/kg)
Feb 93	5 10 20 40	451,20 423,30 418,60 451,20	42,86 60,00 88,66 62,26	49,52 51,35 43,70 37,59	92,38 111,35 132,35 99,86	12,70 17,40 15,60 15,80	6,82 8,42 10,93 8,39	18,29 43,53 34,97 18,44	25,12 51,95 45,90 26,84	12700,00 17400,00 15600,00 15800,00	4,98 5,50 9,52 5,61	0,31 0,71 0,96 0,85	5,29 6,20 10,47 6,46		0,56 0,80 1,07 0,69	0,11 0,23 0,19 0,14	0,67 1,03 1,26 0,83	8,87 11,51 9,19 6,95	348,29 372,97 232,46 333,75	357,16 384,48 241,65 340,70
Mai 93	5 10 20 40	530,20 595,30 646,50 609,30				13,30 1,56 2,98 5,74				8310,00 5850,00 7660,00 6400,00										
Sep 93	5 10 20 40	574,50 443,60 676,40 458,20	13,88 4,06 6,40 6,62	8,97 9,85 5,96 5,09	22,85 13,91 12,36 11,71	4,33 4,18 3,64 2,60	8,85 4,84 3,76 4,68	1,60 0,82 0,43 0,64	10,45 5,66 4,19 5,31	11290,00 1470,00 1380,00 3600,00	0,35 0,09 0,12 0,21	0,31 0,02 0,02 0,27	0,66 0,12 0,15 0,48	8,61 9,61 8,44 6,68	1,41 1,65 2,33 2,13	0,05 0,04 0,04 0,04	1,46 1,69 2,37 2,16	10,09 6,03 8,37 5,90	4,99 3,12 51,69 7,53	15,08 9,15 60,06 13,42
Nov 93	5 10 20 40	583,40 608,10 618,60 581,40	2,37 1,83 2,18 1,65	11,62 13,21 17,34 10,26	13,99 15,04 19,52 11,91	1,55 1,45 4,68 2,27	11,83 11,33 13,22 10,27	9,59 12,32 12,16 7,11	21,42 23,66 25,38 17,38	1390,00 1440,00		2,17 1,61 1,61 2,52		3,22 2,73 2,18 2,24		0,16 0,23 0,14 0,10			26,61 28,52 66,79 23,80	
Feb 94	100 500 1300	574,20 604,80 627,80	19,68 36,09 17,86	10,32 17,80 10,94	30,00 53,89 28,80	4,40 7,44 7,53	11,42 11,42 11,43	8,63 7,63 8,68	20,06 19,05 20,11	1590,00 1590,00 1230,00	0,20 0,22 0,22	0,11 0,02 0,08	0,31 0,24 0,30	1,06 1,47 1,29	1,22 1,19 0,83	0,09 0,10 0,12	1,31 1,29 0,95	4,46 5,67 4,19	36,25 20,11 22,17	40,71 25,77 26,36
		EFWS = M	etalikonzentrati	on in der Wass	sersäule	£⊦T = Eleme	ntkonzentrati	on nach Totala	ufschluß	EI-L = Eleme	ntkonzentrati	on nach Leach	ning	G = Gesamti	gehalt im Sch	webstoff (Total	+ Leaching)			

.

talle (Total ... Leashing) Chation 22

⊤ab. 8

	Kern 12o			Kern 12b			Kern 23o			Kern 23b		
îefe	Ton (%)	Silt (%)	Sand (%)	Ton (%)	Silt (%)	Sand (%)	Ton (%)	Silt (%)	Sand (%)	Ton %	Silt %	Sand %
1	4	95	1,0	2,46	87,88	9,66	5,73	93,14	1,13	1.3	7.5	91.2
2	3,9	95,2	0,90	3,26	95,93	0.81	4.09	93.33	2.58	1	10 1	88.9
3	3,4	95,6	1,0	3,49	94,83	1,68	4,48	95.52	0	0.9	11.3	87.8
4	3,2	95,5	1,3	4,3	94,63	1.07	4.17	95.83	ō	1	18 7	80.3
5	3,13	96,18	0,69	4,13	93,93	1.94	2.99	94.35	2.66	21	24.4	73.5
6	3,35	93,37	3,36	3,94	94.01	2.05	4.07	95.93	0	2	28.6	69.4
7	2,75	93,75	3,50	2,78	86,65	10.57	4.05	93 52	2 43	5	14.3	83.7
8	2,81	95,06	2.13	2.45	91.55	6	3 48	93 57	2.95	25	9.4	88.1
9	2,32	85,49	11,35	2.38	92.74	4.18	5.06	80.9	4 04	1	2.6	96.4
10	1,97	85,49	12.54	1.17	87 89	10.94	4 59	95.41	0	1	20	06 1
12	1,11	86,53	12,36	2.72	94.26	3.02	3.07	91 48	5 45	0.5	24	07 1
14	0,18	75,78	24,04	3.34	93.34	3.32	2.89	94.05	3.06	0.5	14	98.1
16	0,55	92,49	6.96	6.74	93 26	0	0.92	77.99	21.09	0.5	1.6	97.0
18	0,11	89.82	10.07	6.16	91.64	22	2 64	97 36	0	0.0	1.0	0,0
20	0,12	67,62	32.26	4.43	92.55	3 02	2.8	97.2	ň	0.4	15	00,0
22	0,3	85,72	13,98	4.41	89.23	6.367	1.55	94 52	3 93	0,4	1,5	30,1
24	0,28	46,56	53,16	4.65	89.44	5.91	1 71	89 99	83			
26	0,44	54,6	44.96	3.16	91.3	5.54	2.32	97 68	3.2			
28	0,6	61,98	37.42	3.98	86.2	9.82	2	90,09	7 91			
30	0,62	74,12	25.26	3.89	91.64	4 47	1.95	98.05	0			
32	0,6	74,4	25	-,			2 51	91 46	6.03			
34	1,1	78,9	20				2 42	92 97	4.61			
36	1,59	79,15	19.26				2 54	90.25	7 21			
38	1,1	40,9	58				2.87	95 45	1.68			
40	0,38	42.92	56.70				2 68	94 34	2 98			
45							1.94	95 24	2,30			
50							1.67	93.24	5.09			

100 CO

at the states

	Kern 12o	Kern 12b	Kern 23o	Kern 23b
Tiefe (cm)	Gehalt (%)	Gehalt (%)	Gehałt (%)	Gehalt (%)
1	79,1	77,40	85,4	40,6
2	72,7	74,70	80,5	35,3
3	70,3	72,70	78,1	37,1
4	68,5	70,50	75,6	38,5
5	67,3	69,20	74,4	36,6
6	67,2	68,40	74,6	33,1
7	67,5	68,40	74,3	29,2
8	66,7	69,00	74,2	28
9	66,5	68,50	72,6	28,4
10	65,4	67,30	72,9	26,4
11	62,4	66,10	71,5	
12	62,4	65,10	70,6	
13	61,2	64,20	69,1	
14	59,2	64,70	68,5	
15	58,9	65,20	70	
16	59,6	65,70	70,9	
17	59,6	64,60	70,3	
18	60,6	65,80	70,8	
19	60,6	65,60	74,3	
20	60,5	65,60	74,2	
21	61,4	66,00	71,2	
22	62	67,00	72	
23	62,3	67,00	71,2	
24	62,2	67,30	66,8	
25	61,4	67,50	67,8	
26	61,9	68,20	65,7	

Tab. 10

	Kern 12o			Kern 12b			Kern 23o			Kern 23b		
Tiefe (cm)	%-Ges-C	%-Org-C	%-Ges-S									
1				5,27	4,88	0,40	6,03	5,97	0,74			
2				4,20	3,99	0,29	5,67	5,55	1,16		0,69	
3				4,95	4,57	0,41	5,20	5,20	1.45	0.93	0.79	0.19
4				4,79	4,57	0,49	5,56	5,40	1,42	1.20	1.05	0,37
5	5,20	4,66	0,45	4,92	4,73	0,73	5,72	5,62	1,56	1,78	1,40	0,66
6	4,52	4,43	0,52	4,44	4,49	0,87	5,33	5,01	1,19	1,24	1,16	0,62
7	4,91	4,60	0,80	4,51	4,15	0,99	5,02	4,50	1,11	1,03	0.89	0,58
8	4,99	4,56	1,24	4,43	4,24	1,24	5,35	5,12	1,19	0,67	0,65	0,40
9	4,39	4,18	1,55	4,39	4,27	1,45	4,91	4,91	1,30	0,41	0,43	0,24
10	4,42	4,03	1,82	3,90	3,76	1,46	4,56	4,52	1,22	0,32	0,29	0,15
12	3,87	3,69	1,76	3,38	3,20	1,49	4,71	4,63	0,98	0,22	0,20	0,09
14	3,33	3,19	2,05	3,61	3,06	1,52	4,72	4,36	1,12	0,14	0,13	0,05
16	3,43	3,31	2,76	3,58	3,28	1,87	4,84	4,44	1,15	0,21	0,18	0,07
18	3,65	3,41	2,23	3,53	3,58	2,31	4,92	4,73	1,33	0,18	0,17	0,06
20	4,18	3,92	1,89	3,66	3,72	1,48	4,92	4,59	1,61	0,27	0,22	0,07
22	4,36	3,93	1,85	4,02	3,62	1,55	4,47	4,24	1,60			
24	4,34	3,98	2,14	3,72	3,73	1,59	4,74	4,61	0,96			
26	4,44	4,27	2,13	3,90	3,78	1,41	4,54	4,21	1,07			
28	4,51	4,37	2,06	5,05	4,29	1,93	4,85	3,96	1,53			
30	4,79	4,73	2,05	4,77	4,63	1,68	4,83	4,39	1,47			
32							4,43	3,57	1,24			
34							3,74	3,23	0,86			
36	4,78	4,53	1,94	4,71	4,46	1,56	3,92	3,44	1,35			
38							4,48	4,02	1,33			
40							4,18	3,83	1,19			
45	4,74	4,65	2,13				4,34	3,85	1,46			
50							3,64	3,65	1,55			

Gesar	ntdaten Bod	enwasser ·	- Nährst	offe - Sa	auersto	off - DO(	C Station 120	
Monat	H.ü.Sed. (cm)	Ni (µmol/l)	Pho (µmol/l)	Amm (µmol/I)	Si(µmol/l)	Sau (µmol/I)	DOC (mg/l)	
Feb 93	5	11,18	0,62	3	18	332,98		
	10	11,68	0,64	3,54	21	333,25		
	20	13,88	0,66	3,21	23,1	330,62		
	40	13,21	0,71	3,04	22	327,36		
Mai 93	5	3,34	0,45	3,34	23,85	172,53		
	10	3.55	0.57	3,55	21	174,04		
	20	5,74	0,64	5,74	23,73	180,43		
	40	4,59	0,58	4,59	19,55	181,3		
Sep 93	5	0.85	0.44	3.2	35.8	5.88	2.25	
	10	0.95	1 16	4 89	46.8	33 43	3 28	
	20	0.59	0.92	3.06	66	6.83	2 48	
	40	0,53	0,67	1,99	34,8	4,91	2,22	
Feb 94	5	33.22	0.62	1.8	28	399.83	2.22	
	10	46.38	0.6	2.17	31.4	392,09	2,16	
	20	33.88	0.53	2.33	22.2	397.11	2,20	
	40	29,38	0,55	2,23	21,1	399,34	3,23	
Mai 94	5	3,37	1,2	6,9	0,12	339,34		
	10	3,41	1	4.1	0,07	336,59		1
	20	3,52	0,9	7,5	0,05	326,44		
	40	3,46	0,9	5.1	0,04	342,1		
				·				Т

#### Gesamtdaten Bodenwasser - Nährstoffe - Sauerstoff - DOC Station 12a

Monat	H.ü.Sed. (cm)	Ni (µmol/l)	Pho (µmol/l)	Amm (µmol/l)	Si (µmol/l)	Sau (µmol/l)	DOC (mg/l)
Feb 93	5	9,73	0,68	2,82	24,3	335,44	
	10	10,04	0,65	3,16	24,1	331,64	
	20	12,45	0.67	2,9	25,2	336,65	
	40	10,04	0,7	2,76	24,4	332,89	
Mai 93	5	3,83	0.47	3,83	14,34	198,49	
	10	3.45	0.46	3.45	16,15	197,36	
	20	4.7	0.5	4.7	18.8	199,81	
	40	7,96	0,5	7,96	24,4	200,94	
Sep 93	5	0,51	0,86	3,02	61,9		2,06
	10	0.31	1.02	3,31	48,4	15,47	2,13
	20	0.22	0.92	2.76	52.3	Ó	2,29
	40	0,39	1,3	4,04	60,9	0	2,18
		0,00		.,			-1

Monat	H.ü.Sed. (cm)	Ni (umol/l)	Pho (µmol/l)	Amm (µmol/l)	Si (µmol/I)	Sau (µmol/l)	DOC (mg/l)
eb 93	5	7,45	0,46	2,42	16,7	322,2	
	10	7,69	0,52	2,67	20,9	322,0	
	20	7,03	0,5	2,07	20,4	320,8	
	40	8,49	0,52	2,57	19,6	328,9	
Mai 93	5	3,21	0,32	4,52	15,3		
	10	3,1	0,29	3,65	15,8		
	20	2,85	0,31	3,24	14,6		
	40	3,12	0,3	3,31	15,3		
Sep 93	5	0,48	0,9	2,08	41		1,90
	10	0,84	0,94	1,6	26,3		1,91
	20	0,76	0,73	1,72	32,8		1,93
	40	0,17	1.07	2.31	39.1		1,95

Gesar	ntdaten Bod	enwasser ·	Nährst	offe - S	auersto	off - DOG	C Station 12c	-
Monat	H.ü.Sed. (cm)	Ni (µmol/I)	Pho (µmal/l)	Amm (µmol/I)	Si(µmol/I)	Sau (µmol/I)	DOC (mg/l)	
Feb 93	5	15,7	0,54	3,7	25,3	324,77		
	10	11,09	0.52	2,66	25,5	324,94		
	20	10,63	0,56	2,98	23	325,08		
	40	14,93	0,5	2,44	20,6	324,14		
Mai 93	5	2,98	0,42	2,98	11,7	215,17		
	10	4,47	0,37	4,47	15,7	216,87		
	20	3.62	0.38	3.62	13.55	217.48		
	40	3,05	0,39	3,05	12,95	222,51		
Sep 93	5	0,39	0,74	1,19	30,1	35,73	1,99	
	10	0.35	0,76	1,13	28,1	16,83	1,98	
	20	0.45	0,98	1,41	37,1	29,66	2,09	
	40	0,21	0,89	1,11	34,1		1,96	3
Feb 94	5	11,59	0,56	1,72	15,3	399,34	2,06	
	10	12.26	0.56	1.85	15,4	397.11	2.16	1
	20	58.83	0.6	2.18	30,1	392.09	2.70	
	40	31.26	0.61	2.06	28.9	399.83	2.07	
	. <u>-</u>		2,01	2,00				 Tab.

Si = Silikat

Ni = Nitrat/-it

Pho = Phosphat

Amm = Ammonium

Sau = Sauerstoff

Tab. 13

Tab. 14

Gesan	ntdaten Boder	wasser -	Nährst	offe - Sa	auersto	off - DOC	Station 230		
Monat	H.ü.Sed. (cm)	Ni (µmol/I)	Pho (µmol/l)	Amm (µmoi/i)	Si (µmol/l)	Sau (µmol/l)	DOC (mg/l)		
Feb 93	5 10 20	13,4 9,72 10,84 11,41	0,5 0,53 0,54 0,51	1,92 1,43 1,62 1,9	105,5 83,5 92,5 78,5	338,16 342,94 340,84 338,03		i	
Mai 93	5 10 20	2,06 4,38 3,08	0,41 0,13 0,12	2,06 4,38 3,08 3 36	30,95 27,75 14,45	168,81 168 167,24 283.4			
Sep 93	5 10 20	0,18 0,96 0,43	0,38 0,43 0,47	1,05 0,91 1	31,1 34,7 41	15,06 44,87 21,7 16,36	2,57 2,67 2,57 2,59		
Nov 93	5 10 20	6,9 6,84 6,81	0,59 0,62 0,61	3,57 3,76 3,66	22,5 21,3 20,8	341,8 341,26 342,57	8.07 8,27 7,58		
Feb 94	40 5 10 20	8,08 12,16 9,26 11,58	0,64 0,66 0,71	3,7 1,34 1,07 1,23	20,8 22,6 20,4 22,8	356 372,66 356,01	1,95 1,88 1,94		Tab 46
	40	30,25	0,59	1,99	23,5	429,69	1,99		] 180.10
Gesan	ntdaten Boder	wasser -	Nährst	offe - Sa	auersto	off - DOC	Station 23a		
Monat Feb 93	H.ü.Sed. (cm) 5	Ni (µmol/l) 10,64	Pho (µmol/l) 0,62	Amm (µmoi/l) 2,89	Si(µmol/I) 25,4 29.7	Sau (µmol/l) 333,79 336,79	DOC (mg/i)		
	20 40	8,15 6,98	0,7 0,57 0,53	2,32 2,24 2,1	24,7 18,7	333,52 333,83			
Mai 93	5 10 20 40	4,32 4,91 4,36 3,6	0,24 0,12 0,19 0,14	4,91 4,21 3,85 3,6	21,1 22,9 20,7 20,0	183,77 151,49 159,26 165,5			
Sep 93	5 10 20 40	0,65 0,08 0,11	0,35 0,11 0,2	1,19 0,52 0,76	29,8 24,2 36,8	0 0 0	2,23 2,21 2,18		
Nov 93	5 10 20 40	6,76 6,6 6,82 6,67	0,65 0,65 0,61 0,6	4,05 4,06 4,03 4,02	23,3 22,8 21,3 22,4	333,53 336,76 337,03 339,79	6,35 7,73 8,78 6,51	τ. V	
Feb 94	5 10 20 40	28,9 26,8 26,5 13,45	0,69 0,67 0,6 0,33	1,71 1,55 1,54 1,39	29 26,8 27,7 18,3	353,69 295,75 303,07 336,81	2,18 2,09 2,11 1,97		Tab. 17
Gesan	ntdaten Boder	wasser -	Nährst	toffe - S	auersto	off - DOC	Station 23b	<u> </u>	]
Monat	H.ü.Sed.(cm)	Ni (µmol/l)	Pho (µmol/l)	Amm (µmol/l)	Si(µmol/I)	Sau (µmol/l)	DOC (mg/l)		
Feb 93	5 10 20 40	9,04 10,7 10,14 10,24	0,65 0,68 0,6 0,61	2,33 2,53 2,69 2,57	30,3 34,5 30,2 25,5	314,59 322,23 308,08 324,1			
Mai 93	5 10 20 40	3,92 3,57 4,31 3,95	0,13 0,15 0,13 0,12	3,12 2,96 3,98 4,02	26,54 25,93 25,88 24,69				
Sep 93	5 10 20 40	0,31 0,29 0,53 0,15	0,35 0,41 0,47 0,25	0,94 0,96 1,09 0,54	17,3 19,5 23,7 15,2		2,60 2,72 2,74 7,89		
Nov 93	5 10 20 40	6,32 6,85 6,2 6,12	0,62 0,62 0,651 0,612	3,95 3,62 3,51 3,21					Tab. 18
Gesar	ntdaten Boder	wasser -	Nährs	toffe - S	auersto	off - DOC	C Station 23c		]
Monat	H.ü.Sed. (cm)	Ni (µmol/l)	Pho (µmol/l)	Amm (µmol/l)	Si (µmol/l)	Sau (µmol/l)	DOC (mg/l)		
Feb 93	5 10 20 40	10,15 8,17 7,91 9,2	0,62 0,58 0,56 0,64	2,77 2,38 2,24 2,58	26,8 24,5 24,1 22,5	318,4 324,59 318,97 322			
Mai 93	5 10 20 40	3,06 3,17 2,17 2,53	0,12 0,12 0,14 0,12	3,06 3,17 2,17 2,53	23 24,85 16,9 17,55	180,9 167,38 167,08 184,98			
Sep 93	5 10 20 40	1,61 0,4 0,25 0,63	0,24 0,32 0,3 0,23	0,96 0,56 0,53 0,41	36,7 15,3 15,8 21,6	93,52 86,25 107,11 128,55	2,22 2,55 2,73 2,59		
Nov 93	5 10 20 40	6,8 7,08 6,59 6,95	0,66 0,65 0,64 0,68	4,37 4,41 4,44 3,4		335,07 333,78 330,52 331,99	7,78 7,69 8,59 6,22		Tab. 19

Gesa	mtdater	Poren	wasser	- Metal	e - Näh	rstoffe	- DOC	Statio	n 120	alloritik in istruminati					Tab. 20	 D
Monat	Tiefe (cm)	Mn (mg/l)	Fe (mg/l)	Mg (mg/l)	K (mg/l)	Ca (mg/l)	Sr (mg/l)	Cu (µg/l)	Со (µg/l)	Cd (µg/l)	Ni (µg/l)	Am (µmol/i)				DOC (mg/l)
Sep 93	1 2 3 4 5 6 7 8 9 10 12 16 18 18 20 22 24 26 28 30 35 40	3,00 2,01 1,72 1,62 1,73 1,67 1,51 1,20 1,03 1,08 1,12 1,20 1,08 1,12 1,28 1,24 1,21 1,19 1,24 1,21 1,19 1,34	4,40 2,33 1,60 1,40 1,31 0,77 0,73 0,72 0,17 0,73 0,72 0,11 0,54 0,23 0,07 0,04 0,06 0,06 0,06 0,09 0,02 0,021 0,31	590,1 561,3 551,3 560,1 549,1 520,1 516,7 529,7 487,8 461,3 314,5 278,7 445,5 455,9 443,5 445,5 442,6 411,3 398,5 416,1 428,4 428,4	260,4 259,4 259,5 259,5 258,9 239,1 241,7 246,5 125,9 329,3 224,3 146,5 125,9 195,5 195,8 186,8 204,3 178,4 187,4 187,8 200 200,4	228,5 225,3 229,1 220,3 222,3 211,7 216,7 223,8 210,4 135,4 119,2 177,7 178,9 177,4 176 171,2 162,6 171,3 173,7 167,7 156,8	4,32 4,23 5,01 4,21 4,32 4,09 4,18 4,27 4,02 2,58 2,26 3,48 3,53 3,44 3,53 3,44 3,31 3,31 3,31 3,31 2,99	15,20 14,90 14,50 13,96 13,68 11,97 11,08 9,12 7,89 11,46 9,28 8,01 3,73 3,75 3,55 2,87 1,90 1,75 1,56 1,55 1,63	2,07 1,56 0,9 0,71 0,78 0,57 0,58 0,58 0,58 0,62 0,63 0,65 0,68 0,68 0,68 0,68 0,68 0,68 0,68 0,68	0,43 0,43 0,32 0,33 0,35 0,31 0,31 0,32 0,33 0,31 0,32 0,31 0,32 0,31 0,32 0,35 0,36 0,32 0,32 0,32 0,32 0,32	5,06 4,35 3,54 3,35 2,95 2,87 2,83 2,98 2,98 3,01 3,2 3,98 3,88 3,88 3,88 3,88 3,88 3,88 3,88	78,4 86,0 173,0 140,3 170,0 216,7 172,2 307,8 311,1 333,3 245,6 167,8 271,1 155,6 265,8 240,0 374,4 266,7 375,6 436,7 503,3 531,1				8,0 9,4 8,6 8,7 9,6 14,7 17,1 12,3 11,6 12,3 13,5 12,5 14,2 15,9 16,6 17,3 19,5
Monat	Tiefe (cm)	Mn (mg/i)	Fe (mg/l)	Mg (mg/i)	Ca (mg/l)	Cu (µg/l)	Co (µg/l)	Cd (µg/l)	Ni (µg/l)			Атт (µтоИ)	Ni (µmol/l)	Si (µmol/I)	Pho (µmol/i)	DOC (mg/l)
Feb 94	1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 35 40 45	0,01 0,81 1,70 0,62 1,08 1,18 1,14 1,11 1,21 1,20 1,25 1,28 1,31 1,30 1,32 1,30 1,32 1,46 1,53 1,59 1,62	0,05 1,62 2,20 0,42 0,15 0,07 0,03 0,06 0,07 0,03 0,06 0,03 0,06 0,05 0,04 0,05 0,07 0,01 0,03 0,04 0,03 0,06	385,7 384,3 384,0 383,0 381,6 376,5 376,5 377,3 373,2 374,4 370,1 370,1 370,1 372,2 371,2 369,2 370,9 367,2	247,3 248,7 251,5 261,5 264,5 260,8 255,8 255,8 255,8 255,8 246,7 247,9 247,8 243,7 240,8 240,8 240,8 240,8 246,5 239,5 237,4	2,18 1,78 2,01 2,15 2,12 1,95 1,96 2,30 2,13 2,29 2,00 2,31 2,15 2,18 2,19 1,78 2,15	0,53 3,05 2,60 0,70 0,92 1,07 1,40 0,89 0,50 0,84 0,84 0,84 0,84 0,84 0,80 0,53 1,07 1,20 0,54 0,56	0,78 0,48 0,55 0,45 0,47 0,42 0,39 0,39 0,39 0,39 0,39 0,39 0,39 0,39	6,80 8,58 7,80 8,34 8,14 8,44 8,44 8,46 8,44 8,46 7,78 7,76 7,76 7,76 7,76 8,14 8,31 7,80 8,36 8,08 8,65			12,4 66,5 100,5 122,5 153,5 206,0 197,5 220,2 258,0 302,5 321,0 322,5 321,0 322,0 334,0 410,0 410,0 432,5 474,0	7.0 5.3 3.1 2.2 2.1 1.3 0.9 0.5 0.4 0.5 0.4 0.5 0.1 0.1 0.1 0.1 0.0 0.0	89,0 162,5 214,0 255,5 450,0 510,0 490,0 520,0 520,0 600,0 600,0 600,0 600,0 770,0 770,0 385,0 372,0 705,0 615,0 620,0 680,0	0.8 1.0 1.7 7.7 17.2 33.5 38.0 49.5 60.0 49.5 75.0 44.8 59.8 83.5 50.0 49.0 62.0	3,5 4,6 5,3 8,6 14,8 11,8 12,5 12,6 13,8
Monat Apr/Mai 94	Tiefe 1 2 3 4 5 6 7 8 9 10	Mn (mg/l) 0,55 1,21 0,80 0,55 0,55 0,55 0,43 0,43 0,46 0,50 0,47	Fe (mg/l) 0,50 0,75 1,63 1,23 0,95 0,92 0,89 0,79 0,71 0,70	Mg (mg/l) 277,40 354,80 357,00 359,40 357,80 353,60 353,60 356,10 360,80 361,60 364,00	Ca (mg/l) 214,70 222,40 226,90 228,20 227,80 224,30 224,30 234,50 230,30 236,90	Cu (µg/l) 2,72 2,72 2,41 2,10 1,85 2,25 2,21 2,13 2,13 2,13	Co (µg/l) 0,85 1,86 0,78 0,80 0,60 0,56 0,23 0,40 0,23 0,40	Cd (µg/l) 0,32 0,18 0,16 0,13 0,18 0,12 0,18 0,12 0,08 0,12	Ni (µg/l) 7,80 8,30 7,13 6,20 6,16 5,95 6,80 6,40 6,69 7,06			Amm (µmol/) 45,1 71,0 100,0 132,5 185,0 228,5 260,5 304,5 329,0 345,5	Ni (mmoi/) 1,30 0,50 0,45 0,45 0,45 0,62 0,62 0,62 0,55 0,55 0,51	Si (µmol/l) 253,0 326,5 435,0 525,0 620,0 625,0 630,0 670,0 685,0	Pho (μmol/l) 1,3 0,5 5,1 18,0 24,8 36,5 41,5 44,5 53,0 56,0	DOC (mg/l) 6,8 7,3 6,7 8,2 12,7 14,0 20,0 14,1 16,9 18,1

												<u>li de Antonia (</u>		Geographie	<u>en en e</u>		<u>ółowa</u> ny p
	y a shiri se s			9 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		•	a kasi ji ja r	a the seco	90 - 14 star 16 st		leve iper						
											· - •••						
		Deven			A NING			Statio	120			water of a state of the state o	<b></b> poop_ <b></b>	<u></u>		Tab 24	<u> </u>
Gesar	ntoaten	Poren	wasser	- wetan	e - Nan	stone		Station	1 1 <b>2</b> a							Tab. 21	
Monat	Tiefe (cm)	Mn (mg/l)	Fe (mg/l)	Mg (mg/l)	Ca (mg/l)	Cu (µg/l)	Ni (µg/l)						Amm (µmoi/l)	Ni (µmol/l)	Si (µmol/l)	Pho (µmol/i)	DOC (mg/l)
Apr./Mai 94	2	0,32	0,02	354,8	228,1	27,28	70,4 94,1						29,9 105,0	4,96 0,95	183,0	34,0	4,0
	4	0,35	0,07	350,1	228,6	25,79	82,6						187,0	1,20	278,5	39,0	
-	5	0,36 0,48	0,07	355,6	239,8	25,30 26,02	75,6 73,0						189,5	1,00	328,5 450,0	60,5 94,0	
	7 8	0,57 0,58	0,11 0,11	359,0 358,6	243,8 239,3	23,63 22,55	79,5 76,8						221,5 248,0	1,15 1,15	485,0 500,0	107,5 99,5	
L	9 10	0,59 0,65	0,08 0,06	355,7 358,0	240,6 248,6	23,45 22,98	78,0 75,0	ini anna di Tili Anna		Kraika (1966)			254,5 265,5	1,30 1,25	555,0 530,0	104,5 85,0	
Gesar	ntdaten	Poren	wasser	- Metal	e - Näh	rstoffe	DOC	Statio	12b			<del>Rizar - 120.22 a mar - 10 i</del>	<b>a - y</b> (( ¹ - 10) <b>- 1</b> - 10) - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			Tab. 22	
Monat	Tiefe	Mn (mg/i)	Fe (mg/l)	Mg (mg/l)	K (mg/l)	Ca (mg/l)	Sr (mg/l)	Cu (µg/l)	Co (µg/l)	Cd (µg/l)	Ni (µg/l)		Amm (µmol/l)				DOC (mg/l)
Sep 93	1	5,06	3,64	535,3	268,4	216,5	4,20	22,60	2,38	0,50	4,9		1,7				4,4
	3	1,23	1,96	525,6	272,6	219,4	4,14	21,56	0,95	0,34	2,8		30.0				6,6
	4 5	0,77	0,80	527,3	269,8	210,5	4,11 4,05	19,45	0,89	0,18	2,3		46,1				8,5 9,4
	6 7	0,75 0,52	0,37 0,61	505,9 486,3	268,3 268,5	220,1 220,2	4,12 4,00	15,20 15,26	0,87 0,82	0,21 0,22	2,1 2,0		11,7 94,4				9,8 12,5
	8	0,78	0,36	502,3	288,8	221,1	4,08	13,77	0,79	0,24	2,4		41,6 36 1				11,1
	10	0,82	0,31	480,3	268,1	219,7	4,02	12,95	0,73	0,18	3,4		93,3				14,2
	12	0,81 0,84	0,32	450,4 448,3	280,4 281,1	215,3 210,1	4,05 4,01	12,56 10,23	0,45 0,56	0,18 0,18	3,5 4,4		183,9 148,9				15,7 15,8
	16 18	0,98 0.97	0,14 0.12	450,8 453,2	271,1 271,45	206,8 206,2	3,97 3,66	10,20 8,99	0,6 0.55	0,18 0.18	4,2 4,3		215,0 132.8				15,5 17,1
	20	0,97	0,12	453,2	270,2	206,1	3,80	6,32	0,55	0,17	4,7		205,0				18,5
	22	1,21	0,11	452,5 447,9	269,7 263,8	205,3	3,93	6,22	0,59	0,17	4,0 4,2		251,1 347,2				17,6
1	26 28	1,34 1,45	0,07 0.08	463,3 451,1	271,1 258.6	210,3 203.5	4,04 3,99	.6,12 5.50	0,49 0.48	0,18 0.13	4,3 4.5		266,1 410.0				18,8 18,7
	30 35	1,45 1,64	0,22 0,06	418,7 429,3	259,5 258,7	203,4 198,4	3,83 3,75	5,65 5,42	0,78 0,65	0,21 0,25	4,5 4,5		377,8 327,8				20,8 22,8
Monat	Tiefe (cm)	Mn (mg/i)	Fe (mg/l)	Mg (mg/l)	Ca (mg/l)	Cu (µg/l)	Co (µg/l)	Cd (µg/l)	Ni (µg/l)				Amm (µmol/l)	Ni (µmol/I)	Si (µmol/I)	Pho (µmol/i)	DOC (mg/l)
Apr/Mai 94	1	0,05	0,02	356,9	222,1	2,40	0,03	0,29	0,26				21,00	2,75	139,50 288.00	2,40 10 70	3,82
	3	0,32	0,03	356,6	228,6	1,80	0,38	0,21	0,60				244,00	0,40	465.00	18,65	1
	4 5	0,15 0,18	0,07 0,10	350,1 352,1	221,6 225,4	1,72 2,00	0,28 0,20	0,22 0,19	0,66 0,67				159,00 216,00	0,58 0,76	445,00 510,00	15,90 43,00	
	6 7	0,22 0.20	0,10 0,11	355,6 359.0	239,8 243,8	2,00 1,93	0,24	0,20 0.15	0,80 0,79				240,00 270.00	0,85 0,80	530,00 590,00	33,55 60,50	
	8	0,23	0,11	358,6	239,3	1,50	0,24	0,12	0,80				308,00	0,48	600,00	60,50	
L <u></u>	10	0,23	0,08	358,0	240,6	1,00	0,26	0,12	0,77	<del>9/</del>		·	333,50	0,40	625,00	61,00	
Gesar	ntdaten	Poren	wasser	- Metal	le - Näh	rstoffe	- DOC	Statio	n 12c			<u></u>	al ay la tr' la ta ig in ta de alla dia dia			Tab. 23	}
Monat	Tiefe	Mn (mg/l)	Fe (mg/l)	Mg (mg/l)	Ca (mg/l)	Cu (µg/l)	Ni (µg/l)						Amm (µmol/l)	Ni (µmol/l)	Si (µmol/l)	Pho (µmol/l)	DOC (mg/l)
Apr/Mai 94	1	5,63	0,05	377,6	231,6	29,5	84,6 85 2						71,5	2,1	195,5	2,5	5,0
	3	1,77	4,88	379,1	243,6	23.9	74,4						185,0	0,6	199,0	65,0	
	4 5	1,13 1,20	0,94 2,67	373,1 374,6	240,9 237,3	27,7 26,5	89,9 89,4						229,5 286,5	0,8 0,8	215,0 420,0	97,5 156,0	
	6 7	1,14 1,16	0,30 0,16	377,0 377.0	241,7 242.7	24,3 24.0	90,6 97.0						314,5 365.5	0,7 0.6	480,0 650.0	190,0 335.5	
	8	1,18	0,13	377,0	246,1	23,4	80,1						372,0	0,5	585,0	229,0	
	ิ 10	1,15	0,17	373,3	241,0	24,5 22,5	69,2						421,0	0,6	620,0	280,5	

а. •

and a star way being herein a star a star in the star principal star in the star in the star in the star in the

Gesam	tdaten	Poren	Nasser	- Metall	e - Näh	rstoffe	- DOC	Statio	1 230							Tab. 24	
UCSam	Tefe			Ma (mail)	K (mail)	Co (mg/l)	Sr (mail)	Culudo	Co.(up/l)	Cd (100)	Ni (ue#)		Amm (umol/l)			100.24	
Sep 93	1	NIN (mg/i) 0.56	ге (mg/i) 1.63	496.5	263.3	197.7	3.9 3.9	17.39	3.50	0.26	3.50		26.7				7.1
0000	ż	0,36	1,30	499,8	264,7	200,8	3,8	18,50	3,10	0,20	3,45		25,0				5,6
	3	0,32	0,25	501,8	279,2	205,8	4,0	14,00	3,00	0,20	3,30		8,3				6,8
	4	0,30	0,10	527,5	285,9	213,4	4,1	14,30	2,50	0,21	3,20		4,4				8,3
	5	0,27	0,08	512,1	289,5	215,2	4,1	16,07	2,49	0,19	3,10		13,3				10,2
	6	0,30	0,07	508,5	293,1	214,1	4,1	13,09	2,40	0,18	2,90		15,6				11,2
	7	0,31	0,08	511,7	295,7	214,5	4,1	13,77	2,39	0,18	3,50		15,0				13,1
	8	0,34	0,07	497,6	291,5	216,0	4,0	10,94	2,38	0,18	3,00		10,0				15,1
	9	0,30	0,07	202,3	276 4	219,8	4,2	10.70	2,37	0,18	2,07		10,6				16.0
	10	0,25	0,05	430,5	270,4	187 3	3.6	8 18	2,30	0,18	2,50		148.3				10,5
	14	0,10	0.04	429.7	267 4	189.4	3.6	11 26	2 31	0,18	2.51		168.3				
	16	0.12	0.06	398.4	251,9	178,6	3,4	5,55	2,31	0,17	2,53		238,9				
	18	0,04	0,04	397,1	247,8	180,4	3,4	12,99	2,31	0,18	2,63		228,3				
	20	0,04	0,06	356,7	220,5	158,4	3,0	4,88	2,35	0,12	2,40		235,0				
	22	0,05	0,04	415,2	255,2	187,9	3,6	20,31	2,41	0,13	2,34		280,0				
	24	0,03	0,06	394,4	244,2	177,4	3,4	18,96	2,45	0,14	2,60		273,8				
1	26	0,01	0,03	402,7	256,4	181,0	3,3	15,50	2,32	0,13	2,40		345,6				
	28	0,03	0,08	404,3	252,2	183,4	3,4	13,02	2,31	0,14	2,61		346,6				
1	30	0,03	0,07	437,9	200,0	169,4	3,8	13,43	2,30	0,13	2,58		332,7				
	34	0,03	0,01	440,1	207,0	209.3	3.9	7 32	2,37	0,12	2,55		369.2				
	36	0,03	0,03	436.4	276.6	198.6	37	8 94	2.34	0.15	2 14		471.3				
	38	0.02	0.09	449.9	295.3	200.9	3.8	9.42	2.41	0.15	2.22		404.3				
	40	0.02	0.06	458,7	299.8	207.7	3,9	10,40	2,35	0,15	2,45		416,7				
	45	0.02	0,06	444,0	289,5	201,8	3,8	11,15	2,36	0,14	2,34		509,5				
	50	0,02	0,03	440,5	290,4	200,8	3,8	6,30	2,37	0,09	2,91		519,4				
Monat	Tiefe	Mn (mg/l)	Fe (ma/l)	Ma (ma/l)	Ca (mg/l)	Cu (µg/l)	Co (µg/l)	Cd (µg/l)	Ni (µg/l)				Amm (µmol/l)	Ni (µmol/I)	Si (µmol/I)	Pho (µmol/l)	DOC mg/l
Feb 94	1	0,02	0,06	379,1	243,5	14,4	0,03	0,12	0,30				49,75	11,50	128,5	3,3	4,8
	2	0,44	1,16	374,6	242,6	14,8	2,30	0,12	3,32					8,30	238,5	4,5	7,5
	3	0,17	0,66	369,2	236,5	11,6	1,60	0,09	2,72				323	4,30	349,0	10,3	7,4
	4	0,14	0,26	368,3	239,5	10,6	1,36	0,10	2,20				428	2,70	434,0	50,0	9,1
	5	0,12	0,29	362,5	235,9	10,2	1,40	0,09	2,30				514	1,70	497,0	67,0	12,2
	6	0,08	0,09	359,9	234,2	8,9	1,60	0,09	2,13				602	2,70	550,0	103,3	13,8
	7	0,04	0,05	354,5	226,7	8,0	1,44	0,09	2,22				683	2,40	600,0	80,8	16,1
	8	0,05	0,23	352,5	226,5	8,3	1,70	0,06	2,31				/43	2,40	632,5	88,5	19,8
	g	0,05	0,07	248,9	223,8	8,2	1,77	0,08	2,22				7/6	1,90	699,0	59.9	19,5
1	10	0,05	0,13	340,7	221,4	83	1 73	0,07	2,30				712	00,1	319.0	56.0	20,0
	12	0,04	0,05	358.0	224,5	83	1.55	0,07	2,31				921	0,00	380.5	82.0	
	13	0,02	0.17	355.9	223,7	83	1.66	0.07	2 21				997	0.80	296.5	125.0	
	14	0.02	0.12	354 1	224 2	76	1.70	0.05	2.12				1059	0,70	396.0	56.0	
	15	0.03	0.27	355.6	224.8	8.0	1,96	0.03	2.00				1074	0,60	386,5	91,0	
	16	0,02	0,07	354,0	224,2	7,7	1,80	0,04	2,11				1112	0,80	357,5	72,0	
	17	0,01	0,09	350,8	219,6	8,1	1,80	0,03	2,31				1182	0,90	400,0	129,0	
	18	0,02	0,09	352,4	221,2	8,6	1,92	0,03	2,21				1228	0,90	356,5	125,0	
	19	0,02	0,04	353,0	223,5	8,0	1,80	0,03	2,20				1274	0,30	332,5	128,0	
	20	0,04	0,05	357,1	222,6	8,0	1,95	0,03	2,12				1318	0,80	255,5	61,0	
	22	0,03	0,24	354,5	222,3	7,8	1,95	0,03	2,01				1396	0,60	419,5	51,0	
	24	0,02	0,06	356,2	222,2	7,9	1,25	U,03	2,01				1502	0,70	4/2,5	51,U	
	26	0,02	0,02	356,4	221,0	8,0	1,50	0,03	2,01				1602	0,70	4/3,0	04,U 71.0	
	<u>∡8</u> 20	0,01	0,05	300,1	222,0	/,4 9.1	1.32	0,02	2,30				1030	0,00	450 N	600	
	30	0,02	0,12	<b>330,4</b>	222,1	0,1 8 0	1,33	0,03	∠,40 2.46				1926	0,70	522 0	62.0	
	34	0,02	0,04	358 1	223,4	80	1,50	0.02	2,40				1890	0.60	533.0	70.0	
	36	0.07	0,12	354.5	223,0	80	1.53	0.02	2.45				1990	1.00	543.5	72.0	
	38	0.02	0.06	356 2	223.1	7.9	1.54	0.03	2.43				2146	0,80	770.0	51.0	
	40	0,02	0.15	357.1	223.8	6.8	1.52	0.02	2.50				2268	0,90	740,0	58,0	
		1. day 1	E. (	Ma (	(!)	Sr /#	Culurat	Columb	Cd (unit)	Ni (uat)			Amm (umelil)	Ni (umol/l)	Si (umol/l)	Pho (umol/l)	DOC mat
Monat	Tiefe	Min (mg/l)	+e (mg/l)	Mg (mg/l)	Ca (mg/l)	Sr(mg/l)	Cu (µg/l)	Co (µg/l)	Ca (µg/1)	NI(µgµl)			Amm (µmol/i)	NI (UTTO//I)	A DO LIN IN I	-no (µmol/l) 2 0	1 DOC 1110/1
Apr/Mai 94	1	0,06	0,09	507,U	190'0	3,40	0,2	1.64	0,02	1 05			40,4	0,00	193.0	2,0 47	8.82
	2	0,16	0,47	52U,U	203,0	3,50	47	1,04	0,01	1,90			251	0,15	241 5	20.8	7 90
	3	0,10	0,24	40U,U 524 D	200,0	3,18	2.4	0.90	0,01	0,80			464	0,05	325.0	34 7	10.97
	4	0,10	0,25	524,0	209,0	3,00	2,1	0,80	0,01	0,00			454	0,00	585.0	65.5	15 44
	5	0,11	0,05	543.0	200,0	3,01	2,2	0,75	0.01	0.85			551	0.70	535.0	63.5	13.64
	7	0,12	0,14	548.0	218.0	3 71	2,1	0.66	0.01	0.84			608	0,65	555.0	82.0	15.84
	é	0.08	0.05	542.0	220.0	3.76	1.9	0.53	0.01	0.83			656	0.75	595.0	85,0	17,82
1	ş	0.07	0.02	556,0	222.0	3,80	1,9	0,62	0,01	0,84			712	0,85	625,0	111,5	17,97

.

Gesan	itdate	n Poren	wasser	- Metal	le - Näh	rstoffe	- DOC	Station 23a			Tab. 2	5
Monat	Tiefe	Mn (mg/l)	Fe (mg/l)	Mg (mg/l)	Ca (mg/l)	Cu (µg/l)	Ni (µg/l)		Amm (µmol/l) Ni (µmol/l)	Si(µmol/I)	Pho (µmol/l)	DOC (ma/l)
Apr/Mai 94	1 2 3 4 5 6 7 8 9 10	0,05 0,32 0,33 0,35 0,48 0,57 0,58 0,59 0,65	0,02 0,05 0,31 0,07 0,07 0,10 0,11 0,11 0,08 0,06	356,9 354,8 356,6 350,1 355,6 359,0 358,6 355,7 358,0	222,1 228,1 228,6 221,6 239,8 243,8 239,3 240,6 248,6	27,28 21,50 21,36 25,00 25,36 26,02 23,63 22,55 23,45 22,98	70,40 94,11 72,34 82,58 75,30 67,71 79,51 76,79 90,06 66,50		69,30   4.10     180,00   1,25     244,00   0,95     441,00   0,55     497,00   0,50     574,00   0,95     488,00   0,65     665,00   1,25     701,00   0,60     728,00   0,80	176,50 243,50 306,50 515,00 805,00 805,00 785,00 815,00 750,00 675,00	0,95 11,40 13,30 21,20 87,00 115,00 93,50 123,50 113,50 113,50	6,39

stranistical and the state

Gesamtdaten Porenwasser - Metalle - Nährstoffe - DOC						rstoffe	- DOC	Statio	n 23b				Tab. 26	
Monat	Tiefe	Mn (mg/l)	Fe (mg/l)	Mg (mg/l)	Ca (mg/l)	Sr (mg/l)	Cu (µg/l)	Co (µg/l)	Cd (µg/l)	Ni (µg/l)	Amm (µmol/l) Ni (µmol/l)	Si (µmol/I)	Pho (µmol/l)	DOC (mg/l)
April/Mai 94	1 2 3 4 5 6 7 8 9 10	0.04 0,32 0,39 0,30 0,23 0,23 0,20 0,21 0,20 0,21 0,20 0,19	0,12 0,27 0,44 0,40 0,23 0,15 0,13 0,06 0,05 0,06	516,7 498,9 501,8 505,9 518,1 517,3 522,7 511,1 509,1 473,3	206,1 206,9 205,2 211,9 223,7 222,1 227,3 226,5 225,8 212,9	3,41 3,44 3,33 3,76 3,71 3,81 3,31 3,72 3,46	1,10 0,82 1,00 0,90 0,89 0,78 0,87 0,85 0,79 0,75	0,05 2,10 2,00 2,00 1,40 0,95 0,95 0,75 0,56 0,45	0,68 0,35 0,36 0,16 0,14 0,12 0,13 0,12 0,09 0,09	0,10 1,40 1,30 1,01 0,56 0,52 0,51 0,49 0,48 0,48	7.90   25,90     23,30   3,05     47,00   1,20     49,70   0,40     68,50   0,40     84,50   0,75     94,50   2,50	118,00 161,50 247,00 239,00 236,00 247,00 255,00	1,60 4,30 7,02 8,75 6,25 11,15 13,00	6,69
Gesam	tdaten S	Sediment	e - Totala	aufschlu	ß Kern	12o (Sej	otember	1993)					Tab. 2	
------------	-----------	------------	------------	-----------	---------------	----------------	---------------	---------------	---------------	---------------	---------------	---------------	--------------	
Tiefe (cm)	AI (%)	Fe (%)	Ca (%)	Mg (%)	Ni (mg/kg)	Cd (µg/kg)	Cu (mg/kg)	Li (mg/kg)	Co (mg/kg)	Mn (mg/kg)	Zn (mg/kg)	Pb (mg/kg)	Cr (mg/kg	
1														
3														
4	~~	0.50	4.40	0.05	20.0	640.0	21.0	21.0	15 0	261.9	162.7	79.0	68.2	
5	3,9	2,59	1,13	0,95	30,9	640,∠ 618.2	31,9	31,9	15,6	201,0	165.8	76,9 77 1	69.1	
7	4,13	2,51	0,97	0,95	29,5	665.5	30.6	32.1	16.5	259 7	167,9	82	68.2	
, 8	4 13	3.05	0,79	0,99	31 7	628.1	32.8	34.4	16,7	259.5	168.6	82.1	71	
g	3 71	2.83	0.69	0.82	29.5	650.1	30.4	32.1	18	259,7	188,6	84,7	67,5	
10	3.67	3.01	0.69	0.84	32,3	575,3	29,6	32,7	19,1	288	200,3	84,4	68,8	
12	3.9	2,98	0,73	0,87	27,5	435,6	25,8	30,4	18,6	281,3	147,7	60,4	66,3	
14	3,61	3,03	0,75	0,82	25,8	273,9	19,8	27,7	16	290	95,1	41	62,2	
16	3,76	3,52	0,75	0,84	24,3	156,2	19,1	28,4	14,7	351,4	78,9	28,3	64,2	
18	3,49	3,05	0,71	0,8	26	127,6	18,5	28,4	14,1	356,1	74,1	24,9	63,3	
20	4,13	2,98	0,88	0,94	25,2	136,4	19,3	28	14,6	387,9	73	22,5	63,9	
22	4,4	2,75	0,95	0,93	23,9	101,2	17,7	28,8	14,1	439,6	67,6	20,5	60,9	
24	3,58	2,9	1,01	0,87	25,2	86,9	18,1	29,2	14,8	487,3	69,8	20,9	62,6	
26	3,78	2,99	0,77	0,89	27	110	17,9	29,7	15	482,9	67,8	17,4	64,3	
28	3,74	2,94	0,78	0,87	∠3,9 ⊃∈ 4	103,4	10,0	29,5	14,0	401,1	71.6	19,9	62,0 62,0	
35	3,74	2,90 28	1 12	0,91	20,4	97,9	17.4	29.2	14,5	446.9	70.3	16.4	52.2	
55	9,02	2,0	1,12	0,00	20,0	404.0	10,4	20,2	14.0	515 4	70.1	40.0	66.2	

nere (cm)	(0())	(0)	(04)	(1)	(100 m (14m)	(unline)	(malka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
	(%)	(%)	(70)	(70)	(mg/kg)	(pg/kg)	(mg/kg)	(mg/kg)	(ng/kg)	(ing/kg)	(mg/kg)	(119/19)	(ing/kg)
1													
2													
3													
4													
5	0,24	0,64	0,91	0,52	10,66	432	20,22	5,28	4,59	113,90	110,90	74,03	6,16
6	0,24	0,63	0,72	0,51	10,29	416,2	17,97	5,54	3,92	104,00	114,50	73,21	6,11
7	0,26	0,69	0,61	0,52	11,58	460,2	17,78	5,53	4,14	103,70	121,60	77,68	6,19
8	0.26	0,93	0,56	0,52	10,42	421,9	16,22	5,66	3,90	101,40	114,10	77,54	6,42
9	0.26	0.41	0.46	0.48	9,73	399.8	19,22	5,51	5,59	93,44	151,90	90,89	5,48
10	0,25	0.38	0.46	0.46	10.61	423.7	17.33	5.30	5,50	89,16	153,80	78,96	6,96
12	0.22	0.41	0.48	0 44	9.62	401.2	12 78	5.00	7.94	92,53	107.40	61.89	4,80
14	0.19	0.48	0.47	0,43	9.57	321.2	8.95	4 43	5 22	92.24	85.35	38.34	4.27
16	0,10	0,49	0,44	0.43	8.83	143.5	5.84	4 80	4.52	105.80	56 28	24.96	4.13
18	0,10	0,48	0.45	0,45	9.47	89.9	6.24	4.80	4 89	122 20	67 86	21 52	4.50
20	0,20	0,40	0,40	0,40	9.64	88.2	8 17	5 29	4 72	145 50	33.00	21.36	4 80
20	0,21	0,31	0,50	0,47	7 48	05.4	4.51	5 31	3.02	124 20	32 27	15.97	4 62
22	0,22	0,42	0,54	0,43	7,40	30,4		5,01	3,02	195 10	38 47	10,07	4,63
24	0,21	0,49	0,54	0,48	9,75	00,0	5,44	5,42	4,01	100,10	30,47	15,10	5 10
26	0,21	0,45	0,44	0,48	9,74	45,8	4,66	5,60	4,/1	100,00	31,47	10,00	5,10
28	0,21	0,47	0,44	0,48	9,79	91,2	5,14	5,50	4,57	172,90	30,35	13,03	4,73
30	0,22	0,47	0,49	0,49	10,17	89,6	5,16	5,82	4,56	185,80	31,17	13,76	5,08
35	0,22	0,40	0,45	0,44	10,42	85,6	5,76	5,69	4,50	158,70	33,53	11,67	5,03
40	0,22	0,54	0,38	0,45	11,61	87,8	7,70	5,68	4,91	197,80	32,44	13,82	5,13
40	0,22	0,54	0,38	0,45	11,61	87,8	7,70	5,68	4,91	197,80	32,44	13,82	5,13

Gesam	tdaten S	edimente	- Totala	aufschluß	Kern 1	2b (Sept	tember 1	993)					Tab. 29
iefe (cm)	Al (%)	Fe (%)	Ca (%)	Mg (%)	Ni (mg/kg)	Cd (µg/kg)	Cu (mg/kg)	Li (mg/kg)	Co (mg/kg)	Mn (mg/kg)	Zn (mg/kg)	Pb (mg/kg)	Cr (mg/kg)
1	3.61	2.78	0,93	0,93	32,4	418	33,5	32,1	15,7	525,1	149,6	77,1	70,5
2	4,16	2,19	0,78	0,89	29,6	683,1	30,6	29,6	13,8	242,9	147,2	76,2	66,9
3	4,27	2,43	0,77	0,95	35,4	737	30,5	35,1	15,7	237,4	181,2	85,1	74
4	4,7	2,79	0,77	1,02	35,7	841,5	37,6	37	17,6	245,7	200,1	93,9	76,6
5	4,33	2,71	0,81	0,93	31,7	770	33,6	: 33,1	17,3	244,7	187,4	83	(1
6	4,61	2,83	0,84	0,96	32,4	664,4	33,7	31,4	18,6	268,3	192,3	88,7	60,3
7	4,62	3,17	0,81	1,04	32	641,3	33,7	32,8	19,4	288	200,3	88,6	70
8	4,57	3,14	0,82	0,97	33	660	32,9	34,5	19,9	282,5	201,6	88,5	12,5
9	4,24	3,28	0,78	0,92	33,4	601,7	32,2	34,5	20,2	301	192,8	82,9	/4,5 70.7
10	4,8	2,95	0,83	0,97	29,5	476,3	28,1	33,5	19,5	326	162,8	00,0	10,1
12	4,59	3,08	0,91	0,89	27	311,3	21,1	27,5	15,8	326,3	102,4	44,5	00,1
14	4,63	3,05	0,96	0,88	27	209	19,7	28,4	15,2	326,3	64 78 5	34,4	00,/ 65.0
16	4,31	3,34	0,87	0,87	26,6	114,4	20,1	28,3	14,9	370,6	78,5	30,7	65,9
18	4,74	3,82	0,83	0,93	27,1	193,6	20,6	28,9	16,3	476,4	01,2	29,3	66.4
20	4,6	3,11	0,82	0,95	31	138,6	19,7	27,9	15,7	409,9	70,0	24,2	68.1
22	4,5	3,05	0,8	0,94	28,2	116,6	19	27,9	15,7	440	74,7	23,7	64.8
24	4,09	3,11	0,8	0,87	27,6	177,1	18,7	26,5	15,1	433,4	74,2	20,1	67
26	4,2	2,95	0,92	0,91	27,9	129,8	18,8	27,3	15	4/1,2	70,0	14,7	60.2
28	4,56	3,3	1,05	0,95	28	33	18.3	28,8	16,2	5/0,3	12,5	14,1	09,2
	4,94	3,22	0,8	0,8	29,4	79	18,8	30,9	16,1	653,4	75,7	13,6	69,6
Gosam	4,94	3,22	0,8	0,8 Extraktion	29,4	79 12h (Ser	18,8	30,9  1993)	16,1	653,4	75,7	13,6	^{69,6}
Gesam	a,94	3,22 Sedimente	0,8 - HCL-	0,8 Extraktior	29,4 N Kern	⁷⁹ 12b (Sep	18,8	30,9  1993)	16,1	653,4	75,7 Zn	13,6	69,6 Tab. 30
Gesam _{Tiefe}	4,94 Itdaten S Al-L (%)	3,22 Sedimente Fe (%)	0,8 - HCL- Ca (%)	^{0,8} Extraktior ^{Mg} (%)	29,4 Kern Ni (mg/kg)	79 <b>12b (Sep</b> (µg/kg)	18,8 Detember Cu (mg/kg)	30,9 1993) Li (mg/kg)	16,1 Co (mg/kg)	653,4  Mn (mg/kg)	75,7 Zn (mg/kg)	13,6 Pb (mg/kg)	69,6 Tab. 30 Cr (mg/kg)
Gesam Tiefe 1	4,94 Itdaten S Al-L (%) 0,22	3,22 Sedimente Fe (%) 0,83	0,8 - HCL- Ca (%) 0,69	0,8 Extraktior Mg (%) 0,55	29,4 Kern Ni (mg/kg) 11,02	79 <b>12b (Sej</b> Cd (µg/kg) 212,2	18,8 <b>Stember</b> Cu (mg/kg) 19,81	30,9 <b>1993)</b> Li (mg/kg) 4,86	16,1 Co (mg/kg) 4,94	653,4 Mn (mg/kg) 385,40	75,7 Zn (mg/kg) 105,50	13,6 Pb (mg/kg) 75,93	69,6 Tab. 30 Cr (mg/kg) 5,58
Gesam Tiefe 1 2	4,94 Itdaten S Al-L (%) 0,22 0,22	3,22 Sedimente Fe (%) 0,83 0,33	0,8 - HCL- Ca (%) 0,69 0,47	0,8 Extraktior (%) 0,55 0,43	29,4 Ni (mg/kg) 11,02 9,91	79 <b>12b (Sep</b> Cd (µg/kg) 212,2 413,5	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06	30,9 Li (mg/kg) 4,86 4,70	Co (mg/kg) 4,94 3,23	653,4 Mn (mg/kg) 385,40 79,70	Zn (mg/kg) 105,50 97,84	13,6 Pb (mg/kg) 75,93 67,25	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06
Gesam Tiefe 1 2 3	4,94 <b>Itdaten S</b> Al-L (%) 0,22 0,22 0,26	3,22 <b>Sedimente</b> (%) 0,83 0,33 0,38	0,8 - HCL- Ca (%) 0,69 0,47 0,49	0,8 Extraktior (%) 0,55 0,43 0,49	29,4 Ni (mg/kg) 11,02 9,91 11,89	79 <b>12b (Sep</b> Cd (µg/kg) 212,2 413,5 502,4	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46	30,9 Li (mg/kg) 4,86 4,70 6,01	Co (mg/kg) 4,94 3,23 3,98	653,4 Mn (mg/kg) 385,40 79,70 74,40	Zn (mg/kg) 105,50 97,84 139,70	Pb (mg/kg) 75,93 67,25 87,01	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13
Gesam Tiefe 1 2 3 4	4,94 htdaten S AI-L (%) 0,22 0,22 0,26 0,27	3,22 Sedimente Fe (%) 0,83 0,33 0,38 0,36	0,8 - <b>HCL-</b> Ca (%) 0,69 0,47 0,49 0,49	0,8 Extraktion (%) 0,55 0,43 0,49 0,48	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41	79 <b>12b (Sej</b> Cd (µg/kg) 212,2 413,5 502,4 530,2	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46 21,96	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52	Co (mg/kg) 4,94 3,23 3,98 3,83	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68	Zn (mg/kg) 105,50 97,84 139,70 134,90	Pb (mg/kg) 75,93 67,25 87,01 90,83	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04
Gesam Tiefe 1 2 3 4 5	4,94 <b>AI-L</b> (%) 0,22 0,22 0,26 0,27 0,27	3,22 <b>Sedimente</b> Fe (%) 0,83 0,33 0,38 0,36 0,38	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,49 0,51	0,8 Extraktior (%) 0,55 0,43 0,49 0,48 0,49	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46 21,96 21,98	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99	Co (mg/kg) 4,94 3,23 3,98 3,83 4,35	653,4 Mn (rng/kg) 385,40 79,70 74,40 69,68 73,91	Zn (mg/kg) 105,50 97,84 139,70 134,90 138,40	Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 6,34
<b>Gesam</b> Tiefe 1 2 3 4 5 6	4,94 <b>Itdaten S</b> AI-L (%) 0,22 0,22 0,22 0,22 0,26 0,27 0,27 0,25	3,22 <b>Sedimente</b> (%) 0,83 0,33 0,38 0,36 0,38 0,39	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52	0,8 Extraktion (%) 0,55 0,43 0,49 0,48 0,49 0,47	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02	79 <b>12b (Sej</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,98 19,19	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60	75,7 Zn (mg/kg) 105,50 97,84 139,70 134,90 138,40 132,50	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7	4,94 htdaten S Al-L (%) 0,22 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,25	3,22 <b>Sedimente</b> (%) 0,83 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,49 0,52 0,52	0,8 Extraktion (%) 0,55 0,43 0,49 0,48 0,49 0,48 0,49 0,47 0,47	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3 420,2	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46 21,96 21,98 19,19 21,66	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,54 5,54 5,67	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59	Zn (mg/kg) 105,50 97,84 139,70 138,40 132,50 158,50	Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8	4,94 AI-L (%) 0,22 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,26	3,22 <b>Sedimente</b> Fe (%) 0,83 0,33 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,52 0,51	0,8 Extraktion Mg (%) 0,55 0,43 0,49 0,43 0,49 0,48 0,49 0,47 0,47	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3 420,2 420	18,8 <b>Cu</b> (mg/kg) 19,81 18,06 22,46 21,96 21,98 19,19 21,66 18,64	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 138,40 138,40 138,50 158,50 145,20	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 86,12	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,85
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9	4,94 AI-L (%) 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,25 0,26 0,24	3,22 Sedimente Fe (%) 0,83 0,38 0,38 0,36 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,39 0,38 0,36 0,38 0,38 0,38 0,36 0,38 0,38 0,38 0,38 0,36 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,36 0,38 0,36 0,38 0,36 0,38 0,36 0,36 0,38 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,38 0,36 0,36 0,36 0,37 0,38 0,36 0,36 0,36 0,36 0,37 0,38 0,36 0,36 0,36 0,36 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,38 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36 0,36	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,52 0,51 0,50	0,8 Extraktior (%) 0,55 0,43 0,49 0,48 0,49 0,47 0,47 0,47 0,46	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3 420,2 420 489,2	18,8 <b>Cu</b> (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,96 19,19 9,19 21,66 18,64 16,81	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,35 4,43 4,78 5,55 5,83	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76	75,7 Zn (mg/kg) 105,50 97,84 139,70 134,90 138,40 132,50 158,50 145,20 133,30	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,51 5,85 5,42
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9 10	4,94 Al-L (%) 0,22 0,26 0,27 0,26 0,27 0,25 0,25 0,26 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0	3,22 Fe (%) 0,83 0,33 0,38 0,36 0,38 0,39 0,38 0,38 0,39 0,38 0,36 0,36 0,32	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,52 0,52 0,51 0,52 0,52 0,51 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,	0,8 Extraktion (%) 0,55 0,43 0,49 0,43 0,49 0,47 0,47 0,47 0,47 0,46 0,43	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74	79 <b>12b (Sej</b> Cd (µg/kg) 212,2 413,5 502,4 550 421,3 420,2 420 489,2 271,4	18,8 <b>Cu</b> (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,96 19,19 21,66 18,64 18,64 18,64 13,07	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,52 5,59 5,54 5,52 5,54 5,52 5,53 4,78	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,90 138,40 132,50 158,50 145,20 133,30 111,50	Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,51 5,85 5,42 4,44
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9 10 12	4,94 Al-L (%) 0,22 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,25 0,25 0,25 0,26 0,24 0,20 0,19	3,22 Fe (%) 0,83 0,33 0,38 0,36 0,38 0,36 0,38 0,38 0,36 0,38 0,38 0,36 0,38 0,36 0,38 0,38 0,36 0,32 0,28	0,8 - HCL- Ca (%) 0,69 0,49 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51	0,8 Extraktion Mg (%) 0,55 0,43 0,49 0,48 0,49 0,48 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,43 0,41	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 421,3 420,2 421,3 420,2 421,3 420,2 421,3 420,2 421,3 420,2 421,3 420,2 421,3 420,2 420,2 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 421,3 420,2 420,2 421,3 420,2 421,4 420,2 421,4 420,2 421,4 421,3 420,2 421,4 420,2 421,4 420,2 421,4 421,2 421,4 420,2 421,4 421,2 421,4 421,4 420,2 421,4 421,2 421,4 421,4 420,2 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421,4 421	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 19,19 21,66 18,64 16,81 13,07 7,49	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31 4,78 4,58	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85 3,56	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 76,59 78,10 77,76 75,50 75,50	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 132,50 138,50 145,20 133,30 111,50 74,23	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22
Tiefe 1 2 3 4 5 6 7 8 9 10 12 14	4,94 AI-L (%) 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,26 0,27 0,25 0,26 0,24 0,20 0,19 0,20	3,22 <b>Sedimente</b> Fe (%) 0,83 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,32 0,28 0,29	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,52 0,51 0,50 0,48 0,52 0,51 0,50 0,45 0,52 0,57	0,8 Extraktion Mg (%) 0,55 0,43 0,49 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,43 0,41 0,41	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 421,4 212,3 145,2	18,8 <b>Cu</b> (mg/kg) 19,81 18,06 22,46 21,98 19,19 21,66 18,64 16,81 13,07 7,49 6,78	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31 4,78 4,58 4,76	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85 5,83 6,85 3,56 3,13	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 75,50 80,01	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 138,40 138,40 138,50 158,50 145,20 133,30 111,50 74,23 43,51	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 39,08	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16	4,94 AI-L (%) 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,25 0,26 0,24 0,20 0,20 0,20 0,22	3,22 <b>Sedimente</b> Fe (%) 0,83 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,32 0,28 0,32 0,29 0,33	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,52 0,51 0,50 0,48 0,52 0,51 0,50 0,48 0,57 0,53	0,8 Extraktior Mg (%) 0,55 0,43 0,49 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,43 0,41 0,44	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12 8,06	79 <b>12b (Sep</b> Cd (µg/kg) 212,2 413,5 502,4 550 421,3 420,2 420,2 420 489,2 271,4 212,3 145,2 89,2	18,8 Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,96 19,19 9,166 18,64 16,81 13,07 7,49 6,78 4,17	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31 4,78 4,58 4,76 5,29	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 75,50 80,01 96,19	Zn (mg/kg) 105,50 97,84 139,70 134,90 138,40 132,50 158,50 145,20 133,30 111,50 74,23 43,51 37,44	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 26,90	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90
Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16 18	4,94 Al-L (%) 0,22 0,26 0,27 0,27 0,25 0,26 0,27 0,25 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,22 0,26 0,27 0,25 0,26 0,27 0,27 0,27 0,22 0,26 0,27 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,27 0,22 0,26 0,27 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0	3,22 Fe (%) 0,83 0,33 0,38 0,36 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,32 0,28 0,29 0,33 0,34	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,52 0,51 0,50 0,48 0,52 0,52 0,51 0,50 0,48 0,52 0,53 0,49	0,8 Extraktion (%) 0,55 0,43 0,49 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,44 0,44 0,44	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,02 9,74 7,33 7,12 8,06 7,13	79 <b>12b (Sej</b> Cd (µg/kg) 212,2 413,5 502,4 550 421,3 420,2 550 421,3 420,2 271,4 212,3 145,2 89,2 115,2	18,8 <b>Dtember</b> Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,96 19,19 21,66 18,64 16,81 13,07 7,49 6,78 4,17 2,23	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,52 5,54 5,52 5,54 5,52 5,54 5,52 5,54 5,52 5,54 5,52 5,54 5,52 5,54 5,52 5,54 5,52 5,51 4,78 4,78 4,76 5,29 5,49	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07 2,80	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 75,50 75,50 75,50 75,50 80,01 96,19 116,80	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 132,50 158,50 145,20 133,30 111,50 74,23 43,51 37,44 42,29	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13
Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20	4,94 Al-L (%) 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,26 0,27 0,25 0,26 0,24 0,20 0,20 0,20 0,20 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,25 0,25 0,22 0,25 0,22 0,25 0,22 0,25 0,22 0,25 0,22 0,25 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,25 0,22 0,22 0,22 0,25 0,22 0,22 0,22 0,25 0,27 0,27 0,27 0,27 0,27 0,27 0,22 0,22 0,26 0,27 0,22 0,26 0,27 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,22 0,20 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,23 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0	3,22 Fe (%) 0,83 0,33 0,38 0,36 0,38 0,36 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38	0,8 <b>- HCL-</b> Ca (%) 0,69 0,49 0,51 0,52 0,51 0,50 0,49 0,51 0,52 0,51 0,52 0,57 0,53 0,49 0,51	0,8 Mg (%) 0,55 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,41 0,44 0,44 0,47	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12 8,06 7,13 10,20	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 550,2 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 415,2 115,2 115,2 115,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 110,2 115,2 115,2 110,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 115,2 1	18,8 Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 19,19 21,66 18,64 16,81 13,07 7,49 6,78 4,17 2,23 7,02	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,54 5,67 5,82 5,31 4,78 4,78 4,78 4,78 4,78 4,76 5,29 5,49 5,70	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07 2,80 5,19	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 80,01 96,19 116,80 122,60	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 138,40 138,40 138,50 145,20 158,50 145,20 133,30 111,50 74,23 43,51 37,44 42,29 35,39	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36 21,85	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13 5,12 5,12
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 7 8 9 10 12 14 16 18 20 22	4,94 AI-L (%) 0,22 0,22 0,22 0,26 0,27 0,27 0,25 0,26 0,27 0,25 0,26 0,24 0,20 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,23 0,22 0,22 0,22 0,22 0,23 0,22 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,23 0,22 0,22 0,23 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,23 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0	3,22 Fe (%) 0,83 0,33 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,32 0,28 0,29 0,33 0,33 0,33 0,32	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,50 0,48 0,52 0,51 0,50 0,48 0,52 0,51 0,50 0,48 0,51 0,53 0,49 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,53 0,44 0,51 0,52 0,51 0,52 0,53 0,46 0,51 0,51 0,52 0,53 0,46 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,	0,8 Extraktior Mg (%) 0,55 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,43 0,43	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12 8,06 7,13 10,20 6,96	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 550,2 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 413,5 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 421,3 550 420,2 455,2 212,2 413,5 550 421,3 455,2 212,2 413,5 550 421,3 455,2 212,2 413,5 550 421,3 455,2 212,2 413,5 550 421,3 455,2 212,2 413,5 550 421,3 455,2 212,3 115,2 100,2 550 100,2 550 422,3 115,2 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 550 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2 100,2	18,8 Cu (mg/kg) 19,81 18,06 22,46 21,96 21,98 19,19 21,66 18,64 16,81 13,07 7,49 8,78 4,17 2,23 7,02 3,38	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31 4,78 4,76 5,82 5,31 4,78 4,76 5,29 5,49 5,70 5,02	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,35 5,55 5,83 6,85 5,83 6,85 5,83 3,56 3,13 3,07 2,80 5,19 2,82	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 75,50 75,50 80,01 96,19 116,80 122,60 111,50	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 138,40 138,40 138,50 145,20 133,30 111,50 74,23 43,51 37,44 42,29 35,39 32,57	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36 21,85 17,70	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13 5,12 5,02
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24	4,94 <b>AI-L</b> (%) 0,22 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,22 0,22 0,22 0,22 0,26 0,27 0,25 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22	3,22 Fe (%) 0,83 0,33 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,32 0,28 0,29 0,33 0,34 0,37 0,32 0,38	0,8 <b>Ca</b> (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,52 0,51 0,50 0,48 0,57 0,53 0,49 0,51 0,53 0,49 0,46 0,47	0,8 Extraktior Mg (%) 0,55 0,43 0,49 0,48 0,49 0,47 0,47 0,47 0,47 0,44 0,43 0,41 0,41 0,41 0,41 0,41 0,44 0,44 0,44 0,43 0,44 0,43 0,44	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12 8,06 7,13 10,20 6,96 8,95	79 <b>12b (Sep</b> Cd (µg/kg) 212,2 413,5 502,4 550 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 439,2 271,4 212,3 145,2 89,2 115,2 100,2 89,2 102,3	18,8 Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,96 19,19 21,66 18,64 16,61 13,07 7,49 6,78 4,17 2,23 7,02 3,38 6,32	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,51 4,78 4,58 4,76 5,29 5,31 4,78 4,58 4,76 5,29 5,70 5,70 5,70 5,70 5,02 4,88	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07 2,80 5,19 2,82 4,79	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 80,01 96,19 116,80 122,60 111,50 140,40	75,7 Zn (mg/kg) 105,50 97,84 139,70 134,90 138,40 132,50 138,40 132,50 145,20 133,30 111,50 74,23 43,51 37,44 42,29 35,39 32,57 31,76	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36 21,85 17,70 18,42	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13 5,12 5,02 4,60
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26	4,94 Al-L (%) 0,22 0,22 0,26 0,27 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,22 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,25 0,26 0,27 0,27 0,25 0,26 0,27 0,27 0,27 0,25 0,26 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,20 0,20 0,20 0,20 0,22 0,22 0,26 0,27 0,27 0,22 0,26 0,27 0,22 0,26 0,27 0,27 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0	3,22 Fe (%) 0,83 0,33 0,38 0,36 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38	0,8 - HCL- Ca (%) 0,69 0,49 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,48 0,52 0,57 0,53 0,49 0,51 0,49 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,	0,8 Extraktion Mg (%) 0,55 0,43 0,49 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,44 0,43 0,41 0,41 0,44 0,44 0,44 0,47 0,43 0,44 0,47	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,02 9,74 7,33 7,12 8,06 7,13 10,20 6,96 8,95 7,44	79 <b>12b (Sej</b> Cd (µg/kg) 212,2 413,5 502,4 550 421,3 420,2 271,4 212,3 420,2 271,4 212,3 145,2 89,2 115,2 100,2 89,2 102,3 89,2	18,8 <b>Cu</b> (mg/kg) 19,81 18,06 22,46 21,96 21,96 19,19 21,66 18,64 16,81 13,07 7,49 6,78 4,17 2,23 7,02 3,38 6,32 2,88	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,54 5,67 5,82 5,51 4,78 4,78 4,78 4,76 5,29 5,49 5,51 4,76 5,29 5,51 4,76 5,29 5,51 4,76 4,88 5,81	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07 2,80 5,19 2,82 4,79 2,84	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 75,50 71,150 116,80 122,60 111,50	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,90 138,40 132,50 158,50 145,20 133,30 111,50 74,23 43,51 137,44 42,29 35,39 32,57 31,76 32,81	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36 21,85 17,70 18,42 15,31	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13 5,12 5,02 4,60 5,33 5,53
<b>Gesam</b> Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 24 26 28	4,94 Al-L (%) 0,22 0,22 0,26 0,27 0,27 0,27 0,25 0,26 0,27 0,25 0,26 0,24 0,20 0,20 0,20 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,25 0,25 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0	3,22 Fe (%) 0,83 0,33 0,38 0,38 0,38 0,38 0,38 0,38	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,52 0,51 0,50 0,51 0,52 0,51 0,52 0,57 0,53 0,49 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,51 0,52 0,52 0,52 0,51 0,52 0,52 0,52 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,	0,8 Extraktion Mg (%) 0,55 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,41 0,41 0,41 0,41 0,44 0,47 0,43 0,44 0,47 0,48	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12 8,06 7,13 10,20 6,96 8,95 7,44 7,31	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 530,2 550 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 45,2 115,2 100,2 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 89,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 102,3 80,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2	18,8 Cu (mg/kg) 19,81 18,06 22,46 21,98 19,19 21,66 18,64 16,81 13,07 7,49 6,78 4,17 2,23 7,02 3,38 6,32 2,88 2,16	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31 4,78 4,58 4,76 5,29 5,31 4,78 4,58 4,76 5,29 5,49 5,70 5,02 4,88 5,81 5,94	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07 2,80 5,19 2,82 4,79 2,84 2,61	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,88 73,91 73,60 76,59 78,10 77,76 75,50 80,01 16,80 122,60 111,50 140,40 132,10 146,50	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 138,40 138,40 138,50 158,50 145,20 133,30 111,50 74,23 43,51 37,44 42,29 35,39 32,57 31,76 32,81 34,82	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36 21,85 17,70 18,42 15,31 14,68	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13 5,12 5,02 4,60 5,53 5,54 5,02 5,02 5,02 5,02 5,02 5,02 5,02 5,02 5,03 5,13 5,12 5,02 5,02 5,02 5,03 5,13 5,12 5,02 5,02 5,03 5,13 5,12 5,02 5,02 5,03 5,13 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,12 5,54 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55 5
Gesam Tiefe 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30	4,94 AI-L (%) 0,22 0,22 0,26 0,27 0,27 0,25 0,26 0,27 0,25 0,26 0,24 0,20 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,24 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0	3,22 Fe (%) 0,83 0,33 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,32 0,28 0,29 0,33 0,33 0,32 0,33 0,33 0,35 0,34	0,8 - HCL- Ca (%) 0,69 0,47 0,49 0,51 0,52 0,51 0,50 0,48 0,52 0,57 0,53 0,49 0,51 0,49 0,51 0,50 0,47 0,59 0,51 0,50 0,47 0,59 0,51 0,50 0,47 0,59 0,51 0,52 0,51 0,52 0,57 0,53 0,49 0,51 0,52 0,57 0,53 0,49 0,51 0,52 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55	0,8 Extraktion Mg (%) 0,55 0,43 0,49 0,47 0,47 0,47 0,47 0,47 0,44 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,41 0,42 0,43 0,44 0,47 0,43 0,44 0,47 0,43 0,44 0,47 0,43 0,44 0,47 0,43 0,44 0,44 0,44 0,47 0,43 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,44 0,44 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,44 0,44 0,44 0,44 0,44 0,47 0,47 0,47 0,47 0,43 0,47 0,43 0,44 0,47 0,48 0,47 0,47 0,48 0,47 0,47 0,48 0,47 0,47 0,48 0,47 0,47 0,48 0,47 0,47 0,48 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47	29,4 Ni (mg/kg) 11,02 9,91 11,89 11,41 10,97 10,02 10,54 10,75 10,02 9,74 7,33 7,12 8,06 7,13 10,02 9,74 7,33 7,12 8,06 7,13 10,20 6,96 8,95 7,44 7,31 6,73	79 <b>12b (Seg</b> Cd (µg/kg) 212,2 413,5 502,4 550 421,3 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 420,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 400,2 40,	18,8 Cu (mg/kg) 19,81 18,06 22,46 21,96 21,96 21,96 18,64 16,81 13,07 7,49 6,78 4,17 2,23 7,02 3,38 6,32 2,88 2,16 2,26	30,9 Li (mg/kg) 4,86 4,70 6,01 5,52 5,99 5,54 5,67 5,82 5,31 4,78 4,76 5,29 5,49 5,70 5,29 5,49 5,70 5,02 4,88 5,81 5,94 5,42	16,1 Co (mg/kg) 4,94 3,23 3,98 3,83 4,35 4,43 4,35 4,43 4,78 5,55 5,83 6,85 3,56 3,13 3,07 2,80 5,19 2,82 4,79 2,84 2,61 2,49	653,4 Mn (mg/kg) 385,40 79,70 74,40 69,68 73,91 73,60 76,59 78,10 77,76 75,50 75,50 75,50 80,01 96,19 116,80 122,60 111,50 140,40 132,10 146,50 151,50	75,7 Zn (mg/kg) 105,50 97,84 139,70 138,40 132,50 138,40 132,50 145,20 133,30 111,50 74,23 43,51 37,44 42,29 35,39 32,57 31,76 32,81 34,82 44,65	13,6 Pb (mg/kg) 75,93 67,25 87,01 90,83 88,40 85,50 86,12 88,57 78,92 64,59 39,08 29,59 26,90 20,36 21,85 17,70 18,42 15,31 14,68 14,47 15,90	69,6 <b>Tab. 30</b> Cr (mg/kg) 5,58 5,06 6,13 6,04 6,34 5,96 5,51 5,85 5,42 4,44 4,22 4,29 4,90 5,13 5,12 5,02 4,60 5,33 5,54 5,01 5,02

.

Gesamt	daten S	ediment	e - Totala	aufschluß	Kern 2	Kern 23o (September 1993)							
ïefe (cm)	Al (%)	Fe (%)	Ca (%)	Mg (%)	Ni (mg/kg)	Cd (mg/kg)	Cu (mg/kg)	Li (mg/kg)	Co (mg/kg)	Mn (mg/kg)	Zn (mg/kg)	Pb (mg/kg)	Cr (mg/kg)
1	5,02	3,38	0,66	1,04	33,2	1,61	49,4	36	14.1	277.8	267	165.5	75.1
2	4,34	2,96	0,43	0,88	34,8	1,95	52,8	35,5	17.4	228.1	340.3	177.8	76.3
3	4,42	3,25	0,44	0,91	35,4	1,97	53	36.1	17	252.2	348.7	195.1	77 7
4	4,63	3,3	0,48	0,96	35	1.80	52.1	36.4	16.4	264.2	316.3	197.9	79.2
. 5	4,79	3,47	0,58	1,07	33.4	1.92	52.6	36.7	16	302.7	329.9	197.2	76
6	5,01	3,24	0,6	1,05	33,9	1.84	51	38.5	14.9	279.7	312.6	180.4	77.3
7	4,35	2,83	0,59	0,85	32	1,76	48.6	33.7	15.2	274.1	320.3	195.6	74.5
8	4,46	2,97	0,59	0,96	33,1	1,84	52,3	35,6	16.8	283.1	382	219.4	74.8
9	4,55	3,12	0,69	1,02	31,6	1,86	50,7	34,5	16.5	309.3	357.6	209	74.1
10	4,31	3,05	0,51	0,84	32,9	2,14	52,1	36,7	17	278	469.5	269.4	73.1
12	4,31	3,03	0,45	0,81	33,3	2,36	51,6	37.8	20.7	270	476.8	226.5	77 3
14	4,45	3,01	0,66	0,92	34,7	1,67	44,8	36,6	19.5	340.8	346.9	154.2	74.4
16	4,44	3,2	0,67	0,99	31	1,06	36	37.4	19.5	406.4	229.7	102.6	74 1
18	4,84	3,44	0,7	1,04	33,1	0,94	33,9	38,9	18,6	466,8	214.7	106.4	72.8
20	4,44	3,11	0,98	1,02	28,2	0,65	27.5	33,9	16.6	465.5	148.7	86 1	67 1
22	4,61	3,25	1,01	1,05	27,9	0.65	28.8	34.3	17.2	479.7	150.4	86.9	70.2
24	3,99	2,81	0,64	0,89	32,7	0,64	29,5	31,6	17,3	412	137.9	62.1	70.3
26	5,29	2,98	0,94	1,19	32	0,61	29	37,6	17.2	467	131.3	63.8	59.4
28	4,9	3,26	1,08	1,13	29,5	0,44	26,4	36,6	17,6	580,8	120.6	54,9	70.5
30	5,22	3,27	1,3	1,22	33,1	0,44	28,1	37,8	17,1	674,9	122,2	50,5	69,6
32	5,12	2,92	1,2	1,19	29,9	0,39	25,1	34,9	16.1	649	105.4	46.2	68.2
34	4,7	2,96	0,87	1,03	30,4	0,25	25,1	32.6	16.5	529.1	94.5	40.8	69.3
36	4,91	2,95	0,97	1,06	26,6	0,41	23,4	33,1	16,9	495.6	91.3	36.7	62.5
38	4,86	2,62	1,07	1,11	26,4	0,31	22,4	32,9	15,3	409	92.2	43.5	66.5
40	4,44	2,92	0,91	1,04	30,5	0,18	24,1	35,1	16,6	526,4	90,6	38.6	69
45	4,44	3,05	0,76	0,93	30,6	0,19	24,2	33	17.2	492.1	88.2	33.9	68.6
50	3,99	2,99	0.68		26.1	0.21	22.9	31 7	16.3	414	79.4	30.9	65 1

.

. .

iofo (cm)	A1	En	60	Ma	NG	Cd	Co	13	<u>Cu</u>	Mn	Zn	Dh	Cr.
iere (cm)	(%)	(%)	(%)	- (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	0,26	0,98	0,46	0,45	10,19	1,12	4,31	4,78	37,0	113,7	186,6	159,1	5,8
2	0,32	0,42	0,27	0,38	10,74	1,55	4,32	5,7	37,4	47,6	277,2	186,2	6,1
3	0,3	0,43	0,25	0,35	9,43	1,56	4,0	5,84	34,9	42,4	267,0	196,0	5,7
4	0,31	0,5	0,29	0,39	9,73	1,49	4,01	5,78	35,4	48,8	247,5	203,8	6,1
5	0,27	0,73	0,38	0,43	10,89	1,56	5,14	5,24	38,4	53,6	248,6	183,9	5,5
6	0,28	0,55	0,41	0,43	11,18	1,54	4,11	5,15	36,6	58,4	228,7	.179,5	5,5
7	0,29	0,6	0,4	0,44	10,63	1,59	3,47	5,8	35,2	61,3	282,1	193,0	6,2
8	0,3	0,58	0,43	0,47	11,67	1,69	3,82	6,21	34,3	52,0	336,8	212,5	6,3
9	0,29	0,67	0,52	0,49	10,58	1,53	3,74	6,06	33,2	70,8	305,8	195,0	5,9
10	0,36	0,45	0,34	0,41	10,23	1,83	3,94	6,18	33,8	59,1	420,2	259,9	6,3
12	0.31	0.4	0.28	0.37	10.62	1.95	4.7	6.13	32.1	51,7	441,4	222,5	6,1
14	0.29	0.43	0.5	0.49	9,74	1,56	3,92	5.75	29.5	67,9	377,0	196,7	5,6
16	0.29	0.47	0.5	0.47	9.09	0.91	3,99	6.02	26.3	68,1	300.8	144.6	5.6
18	0.29	0.47	0.51	0.5	8.89	0.76	3.49	6.15	19.4	75.1	176.2	87.9	5.5
20	0.29	0.52	0.53	0.52	8.55	0.81	3.42	6.38	18.1	86.1	171.0	88.4	5.8
22	0.26	0.45	0.79	0.59	7.49	0.56	2.98	6.06	11.0	100.8	107.1	73.3	5.3
24	0.26	0.36	0.51	0.45	9.22	0.52	3,56	5.82	14.3	38.7	87.8	55,6	5,2
26	0.26	0.46	0.74	0.6	8.43	0.54	3.1	5.99	13.1	103.3	82.1	45.5	5.2
28	0.26	0.45	0,86	0.62	8,69	0.27	2.77	6,08	10,5	125,2	76,6	35,5	5,2
30	0.27	0,47	1,13	0,64	9,24	0.3	2,66	6,46	9,6	152,0	70.8	31,5	5,6
32	0,22	0,4	0,99	0,62	6,87	0,18	2,15	5,3	7,5	201,5	55,7	25,1	4,6
34	0,23	0,4	0,81	0,58	7	0,19	2,47	5,46	7,3	108,5	50,6	25,9	4,8
36	0,24	0,42	0,73	0,56	7,45	0,11	2,45	5,86	6,1	99,5	50,3	23,6	5,1
38	0,25	0,43	0,65	0,54	8,03	0,14	2,72	6,13	6,1	97,5	48,8	28,9	5,4
40	0,25	0,43	0,71	0,5	8,56	0,06	2,51	6,05	6,2	100,5	45,7	25,2	5,5
45	0,25	0,43	0,54	0,5	7,74	0,09	2,5	6,09	5,1	88,1	44,2	23,9	5,1
50	0.23	0.4	0.47	0.44	7.39	0.07	2.64	5,54	4.2	85.0	39.8	20.2	4.9

The state of the second s

Gesam	tdaten S	ediment	e - Totala	aufschluß	Kern 23b (September 1993)								Tab. 33	
Tiefe (cm)	AI (%)	Fe (%)	Ca (%)	Mg (%)	Ni (mg/kg)	Cd (µg/kg)	Cu (mg/kg)	Li (mg/kg)	Co (mg/kg)	Mn (mg/kg)	Zn (mg/kg)	Pb (mg/kg)	Cr (mg/kg)	
1	1,42	0,55	0,69	0,21	5,2	282,7	7,4	7,2	5,2	108,7	55,3	31,3	16,2	
2	1,34	0,68	0,34	0,23	6,7	354	8,2	9	5,9	93,4	73,4	39,4	15,8	
3	1,47	0,71	0,42	0,24	6,5	355,3	8,5	9,5	6,5	94,1	69,4	37,2	21	
4	1,73	1,04	0,36	0,32	8,7	360,8	10	12,3	8,5	107,9	73,2	39,3	23,9	
5	2,28	1,45	0,37	0,4	11,6	226,6	10,8	15,4	8,5	122	62,1	33,4	28,7	
6	2,29	1,41	0,35	0,36	11,8	150,7	10	14,1	7,6	129,2	42,6	20	27,5	
7	1,6	1,15	0,25	0,31	9,2	103,7	7,1	10,8	5,9	107,9	28,8	15,3	22,2	
8	1,17	0,88	0,18	0,15	5,9	66	5,2	8,8	4,3	94,5	20,7	11,9	16,4	
9	1	0,61	0,15	0,1	6,3	56,2	3,4	6,6	4	86,3	15	12,6	12,8	
10	0,87	0,49	0,12	0,08	5,5	46,2	2,7	5,6	3,5	92,6	11,6	5,5	10,4	
12	0,95	0,49	0,15	0,09	6	56,2	3,6	4,5	4,5	126,5	15	6,9	12,7	
14	0,92	0,51	0,15	0,08	3	42,9	2,2	2,8	5	176,3	10,8	6,9	14,8	
16	0,89	0,43	0,14	0,08	1,6	49,5	2,8	4,7	4	111,9	11,2	7	9,5	
18	0,91	0,38	0,13	0,07	2,3	48,5	2,5	4,5	3,1	99,3	8,6	7,5	7,8	
20	0,88	0,4	0,18	0,09	2,2	35,2	0,6	4,9	3,9	108,3	12,3	9,8	9.1	

,

Gesam	esamtdaten Sedimente - HCL-Extraktion Kern 23b (September 1993)												Tab. 34		
Tiefe (cm)	Al (%)	Fe (%)	Mg (%)	Ca (%)	Ni (mg/kg)	Cd (µg/kg)	Cu (mg/kg)	Li (mg/kg)	Co (mg/kg)	Mn (mg/kg)	Zn (mg/kg)	Pb (mg/kg)	Cr (mg/kg)		
1	0,06	0,11	0,11	0,71	1,77	157,3	4,83	1,20	0,83	39,07	45,69	26,41	1,20		
2	0,07	0,10	0,12	0,32	2,14	232,0	5,67	1,73	1,10	24,83	63,10	34,01	1,60		
3	0,08	0,10	0,12	0,47	3,18	248,2	5,46	1,67	1,51	22,35	63,95	32,09	1,72		
4	0,10	0,14	0,18	0,35	3,75	257,2	6,70	2,23	2,60	31,52	65,63	40,06	2,28		
5	0,12	0,17	0,20	0,25	4,58	156,2	6,60	2,20	2,31	32,80	47,76	29,67	2,47		
6	0,11	0,15	0,17	0,21	3,87	89,3	5,02	2,38	1,98	28,32	27,94	18,10	2,30		
8	0,07	0,09	0,17	0,12	4,25	78.2	5,23	1,57	1,11	17,65	10,41	10.00	2.23		
9	0,05	0,07	0,18	0,23	4,49	42.1	4,40	2,83	1,74	31,55	15,30	12,54	2,46		
10	0,04	0,05	0,06	0,08	1,11	45,2	1,48	0,75	1,10	9,90	8.54	6,10	1.06		
12	0,03	0,04	0,05	0,07	1,17	26,3	0,83	0,81	0,53	7,88	7,62	2.42	0.57		
14	0,02	0,03	0,04	0,07	1,02	25,2	0,62	0,38	0,29	7,19	2,75	1,87	0.57		
16	0,03	0,04	0,05	0,07	1,00	26,1	1,07	0,51	0,54	8,91	3,55	1,79	0.67		
18	0.03	0.04	0.04	0.07	0.86	25.9	0.83	0.69	0.40	7,78	5.17	1.67	0.67		
20	0.03	0.04	0.05	0,19	0.96	18.3	0.99	0.29	0.43	10.56	6.97	1 55	0.77		

وريدو بريد

## Meereswissenschaftliche Berichte MARINE SCIENCE REPORTS

1	(1990)	Postel, Lutz:
		Die Reaktion des Mesozooplanktons, speziell der Biomasse, auf küstennahen Auftrieb vor Westafrika (The mesozooplankton response to coastal upwelling off West Africa with particular regard to biomass)
2	(1990)	Nehring, Dietwart:
		Die hydrographisch-chemischen Bedingungen in der westlichen und zentralen Ostsee von 1979 bis 1988 – ein Vergleich (Hydrographic and chemical conditions in the western and central Baltic Sea from 1979 to 1988 – a comparison)
		Aktuelle Trends hydrographischer und chemischer Parameter in der Ostsee, 1958 – 1989 (Topical trends of hydrographic and chemical
2	(1990)	Zabn Wolfgang:
J	(1990)	Zur numerischen Vorticityanalyse mesoskaler Strom- und Massen- felder im Ozean (On numerical vorticity analysis of mesoscale current and mass fields in the ocean)
4	(1992)	Lemke, Wolfram; Lange, Dieter; Endler, Rudolf (Eds.): Proceedings of the Second Marine Geological Conference – The Baltic, held in Rostock from October 21 to October 26, 1991
5	(1993)	Endler, Rudolf; Lackschewitz, Klas (Eds.): Cruise Report RV "Sonne" Cruise SO82, 1992
6	(1993)	Kulik, Dmitri A.; Harff, Jan: Physicochemical modeling of the Baltic Sea water-sediment column:
		I. Reference ion association models of normative seawater and of Baltic brackish waters at salinities 1–40 ‰, 1 bar total pressure and 0 to 30°C temperature
		(system Na-Mg-Ca-K-Sr-Li-Rb-CI-S-C-Br-F-B-N-Si-P-H-O)
7	(1994)	Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans-Ulrich; Nausch, Günther:
•	((	Hydrographisch-chemische Zustandseinschätzung der Ostsee 1993
8	(1995)	Hagen, Eberhard; John, Hans-Christian: Hydrographische Schnitte im Ostrandstromsystem vor Portugal und Marokko 1991 - 1992
9	(1995)	Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans Ulrich; Nausch,
		Günther; Nagel, Klaus:
		Hydrographisch-chemische Zustandseinschätzung der Ostsee 1994
		Seifert, Torsten; Kayser, Bernd:
	(1005)	A high resolution spherical grid topography of the Baltic Sea
10	(1995)	Analytical theory and numerical experiments to the forcing of flow at isolated topographic features
11	(1995)	Kaiser, Wolfgang: Nebring, Dietwart: Breuel, Günter: Wasmund, Norbert:
	(1000)	Siegel, Herbert; Witt, Gesine; Kerstan, Eberhard; Sadkowiak, Birgit: Zeitreihen hydrographischer, chemischer und biologischer Variablen an der Küstenstation Warnemünde (westliche Ostsee)
		Schneider, Bernd; Pohl, Christa:
		Spurenmetallkonzentrationen vor der Küste Mecklenburg-Vorpom- merns

12	(1996)	Schinke, Holger: Zu den Ursachen von Salzwassereinbrüchen in die Ostsee
13	(1996)	Meyer-Harms, Bettina: Ernährungsstrategie calanoider Copepoden in zwei unterschiedlich trophierten Seegebieten der Ostsee (Pommernbucht, Gotlandsee)
14	(1996)	Reckermann, Marcus: Ultraphytoplankton and protozoan communities and their interactions in different marine pelagic ecosystems (Arabian Sea and Baltic Sea)
15	(1996)	Kerstan, Eberhard: Untersuchung der Verteilungsmuster von Kohlenhydraten in der Ostsee unter Berücksichtigung produktionsbiologischer Meßgrößen
16	(1996)	Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans Ulrich; Nausch, Günther; Nagel, Klaus: Hydrographisch-chemische Zustandseinschätzung der Ostsee 1995
17	(1996)	Brosin, Hans-Jürgen: Zur Geschichte der Meeresforschung in der DDR
18	(1996)	Kube, Jan: The ecology of macrozoobenthos and sea ducks in the Pomeranian Bay
19	(1996)	Hagen, Eberhard (Editor): GOBEX - Summary Report
20	(1996)	Harms, Andreas: Die bodennahe Trübezone der Mecklenburger Bucht unter besonderer Betrachtung der Stoffdynamik bei Schwermetallen