

Fig.1: Baltic Sea bathymetry. Also shown is the location of the Landsort gauge (red asterix), Gotland Sea (GS) and the ICES sub-division 28 (SD28)

Conclusions

- combination of large scale and regional scale indices in a multivariate index has better performance than single large scale indices
- BSE index is versatile for studying ecosystem response to climate signal

	SST-GS	LG	IE
	(2/-1)	(1/0)	(1/0)
AMO	ns	ns	ns
AO	0.64 (0.39)	0.62 (0.37)	0.61 (0.34)
NAO	0.62 (0.35)	0.65 (0.41)	0.54 (ns)
BSI	0.71 (0.49)	0.66 (0.42)	0.67 (0.43)
Chen	0.75 (0.45)	0.84 (0.64)	0.72 (0.42)
BSE	0.73	0.87	0.70

Tab.1:Correlation coefficients and Brier based score parentheses between climate predictors and SST in t GS (1950-2005) and Landsort gauge (LG) (1950-2002) ice extent (IE) (1950-2006)

BONUS Baltic Organisations Network for Funding Science EEIG

Leibniz Institute for Baltic Sea Research Warnemünde

A New Baltic Sea Environmental Index

Karin Junker | Joachim W. Dippner

Leibniz Institute for Baltic Sea Research Warnemünde, Germany karin.junker@jo-warnemuende.de dippner@jo-warnemuende.de

Background

- The Baltic Sea (BS) is a dilution basin characterized by strong salinity gradient and closed circulation.
- Correlation between North Atlantic Oscillation (NAO) and biological variables fails since 2000/2001
- Large scale sea level pressure fields underwent substantial change on the northern hemisphere indicating a global climate regime shift (Swanson & Tsonis, 2009)
- Large scale climate indices perfom insufficiently as predictors for most zooplankton species

Baltic Sea Environmental (BSE) Index

consists of 4 time series:

- Arctic Oscillation (AO)
- Salinity between 120-200 m in the Gotland Sea
- · integrated runoff of all rivers draining into the BS
- relative vorticity of geostrophic wind over the BS area (Chen, 2000)

Statistical Downscaling Experiment

Predictors:

Downscaling Results

AMO, AO, NAO, BSI, Chen, BSE, COADS-SST Predictands:

SST of the Gotland Sea (GS), Landsort gauge (LG), ice extent (IE) and abundance and biomass for the period 1969-2002 of *Acartia* spp, *Pseudocalanus* sp. and *T. longicornis, and total biomass for 1960-1997 of B. longispina, E. nordmanni,, Syncheata* spp. and *measured in ICES sub-division 28 by the Latvian Inst. of Food Safety, Animal Health and Environment*

AMBER

Fig.2: Climate regimes in SLP (hPa) over the North Atlantic. (Hurrell & Deser,2010)

Fig.3: SLP Composite (Dec-Mar) (Dippner et al., 2010)

1980

Years

1990

Temora longicornis copepodites Spring 1960-2002

References

1960

1970

Chen, D., 2000: A monthly circulation climatology for Sweden and its application to a winter temperature case study. International Journal of Climatology, 20, 1067-1076.

Dippner, J.W., K. Junker, and I. Kröncke (2010). *Geophysical Research Letters* 37, L24701, doi:10.1029/2010GL045696. Hurrell, J. W. and C. Deser (2010). Journal of Marine Systems, 79, 231-244, doi:10.1016/j.jmarsys.2009.11.002. Swanson, K. and A. Tsonis (2009). Geophysical Research Letters, 36, L06711, doi:10.1029/2008GL037022.

2000

This part of ERANET BO

wledgements