Methods used in Research Cluster A

Joachim W Dippner

Methods

- EOF Analysis
- POP Analysis (prediction)
- Statistical downscaling (prediction)
- AMOEBA Model
- Cury & Roy Model
- Transfer function modelling
- Threshold Generalized Additive Model (T-GAM)
- Self organizing maps (SOM)

EOF Analysis

- to extract the dominant structure from a data set
- to reduce noise in the data set
- To compress the data set

$$X'(s,t) = \sum m_i(s) \alpha_i(t) + noise$$

• X' = anomalies

- m = EOF pattern fixed in space s
- α = time coefficients (principle components)

What is prediction?

Sunday 21 December 2003 12 UTC ECMWF Forecast t+72 VT: Wednesday 24 December 2003 12 UTC 850hPa u-velocity/ mean sea level pressure SURFACE: MSL Pressure / 850-hPa wind speed

Tomorrow = f (today)

What is prediction?

State (tomorrow) = f [State (today)]

$x_i(t+\Delta t) = f[x_i(t)]$ i=1,...,n State function

Prediction

- depends on the actual state.
 Do we know the actual state?
- requires a transfer function f.
 e.g. predictor filter, differential operator
- must have a skill better than persistency. (quality of prediction)

 $\mathbf{x}_{i}(t+\Delta t) = \alpha \mathbf{x}_{i}(t)$

- $\alpha = 1$
- |α| > 1
- |α| < 1

Persistence System is unstabile System dies

Es bleibt wie es ist. $x \rightarrow \infty$ $x \rightarrow 0$

Conclusion: That cannot work. It is too simple.

$\mathbf{x}_{i}(\mathbf{t}+\Delta \mathbf{t}) = \alpha \mathbf{x}_{i}(\mathbf{t}) + \mathbf{N}(\mu,\sigma)$

 α is the memory of the system elsewhere called predictor filter ($|\alpha| \le 1$)

N is white noise

First Order Autoregressive Model (AR1 Model)

 $x_i(t+\Delta t) = C x_i(t) + N(\mu,\sigma)$

mit $C = \underline{B}_1 / \underline{B}_0$

 \underline{B}_1 , \underline{B}_0 are lag-1 und lag-0 covariance matrices in a noise reduced EOF space

Principal Oscillation Pattern (POP - Model)

Hasselmann 1988

$\mathbf{x}_{i}(t+\Delta t) = \mathbf{D} [\mathbf{x}_{i}(t), \dots]$

mit D = Differential - Operator

Numerical Model

Statistical Downscaling

AMOEBA - Model

Cury & Roy Model

