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Chapter 1

Introduction

1.1 GOTM and GETM

It is now about 3 years ago that the General Ocean Turbulence Model GOTM has
been published as a Public Domain water column model by Burchard et al. [1999].
Since then, a full access to the model source code, numerous data for forcing and
validating test cases and extensive scientific and technical documentation is provided
through the GOTM home page in the World Wide Web at http://www.gotm.net.
The physical part of GOTM has been more and more extended such that now a
wide range of turbulence parameterisations can be compared in one and the same
model environment. During these years, GOTM became a popular water column
model all around the world with more than 100 subscribed users. We do strongly
believe that this acknowledgement of GOTM as a widespread and well-tested model
is a direct consequence of its status as a Public Domain software tool.

A short time after GOTM was published, colleagues started to ask us, whether we
had any intentions to extend GOTM towards a three-dimensional model. Their
arguments were that a one-dimensional water column model is a nice tool for local
boundary layer studies, but the predictability for full-scale (i.e. three-dimensional
problems) would be limited. Furthermore, the transfer of new parameterisations
in GOTM to three-dimensional models would not be straight-forward, and would
require further testing and validation. Our main argument against extending GOTM
towards a three-dimensional model was, that people generally have their favourite
ocean model and would not move to another model just for having access to a greater
choice of turbulence parameterisations. In this situation, the idea was born (and
we are grateful to Georg Umgiesser from Venice, Italy for this suggestion) to isolate
the turbulence module inside GOTM from the rest of the program in such a way
that it can be either called from the basic GOTM model or, through an interface,
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from any three-dimensional circulation model. Today, such interfaces exist for the
Modular Ocean Model (MOM, Princeton University, New Jersey, interface provided
by Encho Demirov, Bologna, Italy), MOHID (Instituto Superior Tecnico, Lisboa,
Portugal, interface provided by Manuel Ruiz Villarreal, Hamburg, Germany), and
... GETM (General Estuarine Transport Model), which is the subject of this report.
For a short history of GETM, see section 1.2.

Instead of extending GOTM to a three-dimensional model, a prototype three-di-
mensional model, GETM, has been constructed around GOTM. The authors of this
report who made GOTM and GETM, have however been infected by the idea of
Public Domain models. Thus, it was clear that the same philosophy as for GOTM
would be followed for GETM. This is not least expressed in the model’s acronyms
sounding similar. The authors are fully aware of the problems additionally posed
by a three-dimensional model in comparison to a one-dimensional model. Since a
one-dimensional model is in fact two-dimensional (considering time as a dimension)
and a three-dimensional model has four dimensions, we expect that all efforts to
maintain GETM as a Public Domain tool will be squared in comparison to GOTM.
We would thus be happy, if our future users would have the square of the patience
they had with GOTM and the square root of the expectations towards us concerning
scientific and technical support.

1.2 A short history of GETM

The idea for GETM was born in May 1997 in Arcachon, France during a workshop
of the PhaSE project which was sponsored by the European Community in the
framework of the MAST-III programme. It was planned to set up an idealised
numerical model for the Eastern Scheldt, The Netherlands for simulating the effect
of vertical mixing of nutrients on filter feeder growth rates. A discussion between
the first author of this report, Peter Herman (NIOO, Yerseke, The Netherlands) and
Walter Eifler (JRC Ispra, Italy) had the result that the associated processes were
inherently three-dimensional (in space), and thus, only a three-dimensional model
could give satisfying answers. Now the question arose, which numerical model to use.
An old wadden sea model by Burchard [1995] including a two-equation turbulence
model was written in z-coordinates with fixed geopotential layers (which could be
added or removed for rising and sinking sea surface elevation, respectively) had
proven to be too noisy for the applications in mind. Furthermore, the step-like
bottom approximation typical for such models did not seem to be sufficient. Other
Public Domain models did not allow for drying and flooding of inter-tidal flats, such
as the Princeton Ocean Model (POM). There was thus the need for a new model.
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Most of the ingredients were however already there. The first author of this report
had already written a k-¢ turbulence model, see Burchard and Baumert [1995],
the forerunner of GOTM. A two-dimensional code for general vertical coordinates
had been written as well, see Burchard and Petersen [1997]. And the first author
of this report had already learned a lot about mode splitting models from Jean-
Marie Beckers (University of Liege, Belgium). Back from Arcachon in Ispra, Italy
at the Joint Research Centre of the European Community, the model was basically
written during six weeks, after which an idealised tidal simulation for the Sylt-Rgmg
Bight in the wadden sea area between Germany and Denmark could be successfully
simulated, see Burchard [1998] and also section 6.1 of this report. By that time this
model had the little attractive name MUDFLAT which at least well accounted for
the models ability to dry and flood inter-tidal flats. At the end of the PhaSE project
in 1999, the idealised simulation of mussel growth in the Eastern Scheldt could be
finished (not yet published, pers. comm. Francois Lamy and Peter Herman).

In May 1998 the second author of this report joined the development of MUDFLAT.
He first fully rewrote the model from a one-file FORTRAN77 code to a modular
FORTRAN90/95 code, made the interface to GOTM (such that the original k-¢
model was not used any more), integrated the netCDF-library into the model, and
prepared the parallelisation of the model. And a new name was created, GETM,
General Estuarine Transport Model. As already in GOTM, the word ” General”
does not imply that the model is general, but indicates the motivation to make it
more and more general.

At that time, GETM has actually been applied for simulating currents inside the
Mururoa atoll in the Pacific Ocean, see Mathieu et al. [2001].

During the year 2001, GETM was then extended by the authors of this report to be
a fully baroclinic model with transport of active and passive tracers, calculation of
density, internal pressure gradient and stratification, surface heat and momentum
fluxes and so forth. During a stay of the first author at the Université Catholique
de Louvain, Institut d’Astronomie et de Géophysique George Lemaitre, Belgium
(we are grateful to Eric Deleersnijder for this invitation and many discussions) the
high-order advection schemes have been written. During another invitation to Bel-
gium, this time to the GHER at the Université de Liege, the first author had the
opportunity to discuss numerical details of GETM with Jean-Marie Beckers, who
originally motivated us to use the mode splitting technique.

The typical challenging application in mind of the authors was always a simulation
of the tidal Elbe, where baroclinicity and drying and flooding of inter-tidal flats play
an important role. Furthermore, the tidal Elbe is long, narrow and bended, such
that the use of Cartesian coordinates would require an indexing of the horizontal
fields, see e.g. Duwe [1988]. Thus, the use of curvi-linear coordinates which follow
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the course of the river has already been considered for a long time. However, the
extensions just listed above, give the model also the ability to simulate shelf sea
processes in fully baroclinic mode, such that the name General Estuarine Transport
Model is already a bit too restrictive.

The present report is documenting the physical and numerical status of GETM in
early 2002.

1.3 List of characteristic GETM features

In the following, a short list of some characteristic GETM features is given:

e Physics

— 3D primitive equations for u, v, T, S, C
— Hydrostatic approximation
— Free surface

— Boussinesq approximation

Drying and flooding, simplyfied physics over mudflats
— Eddy viscosity assumption
— Turbulence closure models from GOTM:

x Zero-, one- and two-equation models
* Various algebraic second-moment closures
* Some simple internal wave parameterisations

e Transformations

— General vertical coordinates

— Orthogonal curvilinear coordinates in horizontal plain
e Numerics

— Finite-volume, finite-difference discretisation on C-grid

— Mode splitting into barotropic and baroclinic mode

— Directional-split advection with high-order TVD schemes
— Various internal pressure gradient formulations

— Quadratic bed friction
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e Computing

— Code written in FORTRAN 90/95
— Modular code structure

— Code prepared for parallel computing

Input/Output in netCDF format
— PROTEX source code documentation

e Miscellaneous

— Public Domain model published under GNU Public Licence

In the following table, some major characteristics of a number of numerical models
are compared:
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where the following abbreviations have been used:

CU:  curvi-linear;
CA:  Cartesian;
FE: Finite elements

MSP: mode splitting;

ADI: alternate directions implicit;

IMP: implicit

The model acronyms have the following meanings:

POM: Princeton Ocean Model, Princeton University, Princeton, New Jersey, see
Blumberg and Mellor [1987]; MOM: Modular Ocean Model, Geophysical Fluid
Dynamics Laboratory, Princeton, New Jersey, see Bryan [1969], Coz [1984] and
Rosati and Miyakoda [1988]; HAMSOM: Hamburg Shelf and Ocean Model, In-
stitute for Oceanography, University of Hamburg, Germany, see Backhaus [1985]
and Pohlmann [1996]; MOHID: Modelo Hidrodindmico, MARETEC group, In-
stituto Superior Tecnico, Universidade Tecnica de Lisboa, Portugal, see Martins
et al. [1998]; SCRUM: S-coordinate Rudgers University Model, Rutgers Univer-
sity, New Jersey, see Song and Haidvogel [1994]; POL3DB: Proudman Oceano-
graphic Laboratory Three-Dimensional B grid model, Birkenhead, United King-
dom, see Holt and James [2001]; GHER-M: the GeoHydrodynamics and Envi-
ronment Research Laboratory Model, University of Liege, Belgium, see Beckers
[1995]; COHERENS: Coupled hydrodynamical-ecological model for regional and
shelf seas, European Commission, see Luyten et al. [1999]; TRIM-3D: Universita
degli Studi di Trento, see Casulli and Cheng [1992]; MIKE-3: Danish Hydraulic
Institute, Hgrsholm, Denmark, see http://www.dhisoftware.com; TELEMAC-
3D: Laboratoire National d’Hydraulique, Electricité de France; ECOM: Hydro-
Qual, see http://www.hydroqual.com/Models/models.htm; TRIWAQ: Rijkswa-
terstraat, The Hague, The Netherlands, see Lander et al. [1994].

From the above comparison, it can be concluded that MOHID and GETM are the
only three-dimensional Public Domain Models with high-order turbulence closures
and drying and flooding of intertidal flats.

1.4 Summary and structure of this report

This report is structured as follows:

First, in chapter 2, the physical equations for momentum and tracers are given in
Cartesian coordinate notation. It is shown, how the drying and flooding is accounted
for already on this level of modelling. Lateral and vertical boundary conditions are
given. Furthermore, the physical link to the turbulence models from GOTM is
explained. The latter is the most characteristic physical difference to many other
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ocean models, which are generally equipped with a smaller choice of turbulence
parameterisations.

In chapter 3, the discretisation is prepared by introducing general vertical coordi-
nates. Based on this, the layer-integrated equations are derived. Furthermore, the
curvi-linear orthogonal transformation is carried out, of which Cartesian coordinates
and spherical coordinates are special cases. These two features, general vertical co-
ordinates and curvi-linear coordinates, have recently been implemented into several
other ocean models (e.g. the Princeton Ocean Model (POM) works with general ver-
tical coordinates since recently and with curvi-linear coordinates since many years,
and the S-Coordinate Rutgers University Model (SCRUM) is built up upon these
two features).

In the most extensive chapter 4, the discretisation of the layer-integrated model
equations is discussed in detail. In contrast to the physical formulation of the
equations, the layer-integration and the numerics do strongly discriminate between
various three-dimensional ocean models. The characteristic numerical features of
GETM are the mode splitting, the high-order advection schemes (which can also
be applied to momentum and in the near future also to turbulent quantities) and
the treatment of drying and flooding of inter-tidal flats. For some terms, a choice
among several discretisation methods is given, such as for the Coriolis rotation, the
internal pressure gradient and the advection algorithms.

In sections 5 and 6, a number of idealised and realistic applications are given. First
(section 5.1), the advantages of the curvi-linear coordinates in comparison to the
Cartesian coordinates are shown by means of simple, vertically integrated steady-
state simulations of flow through bended and constricted channels. Then (section
5.2), the classical two-dimensional friction-less lock exchange experiment is carried
out with several advection schemes. Furthermore (section 5.3), an estuarine test
case is presented by Manuel Ruiz Villarreal (Institute for Oceanography, University
of Hamburg, Germany). In this two-dimensional simulation in the zz domain, a
saltwedge moves back and forth with the tide and induces an estuarine turbidity
maximum at the tip of the saltwedge. Finally (section 5.4), the three-dimensional
so-called NOMADS freshwater eddy case is simulated. In this test case, the develop-
ment of baroclinic instabilities is shown for various momentum and tracer advection
schemes and two-different spatial resolutions.

As realistic applications, tidal currents in the wadden sea area of the Sylt-Rgmg
Bight between Denmark and Germany, wind-driven circulation in Lake Constance,
Germany, and the dynamics of the North Sea are simulated. The wadden sea sim-
ulation (see section 6.1) is the classical test case with the aid of which already the
forerunner of GETM, MUDFLAT has been developed. Here, currents and turbu-
lence for two different discretisations of the momentum advection terms are shown
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as surface plots, Hovmueller diagrams (¢-s plots) and cross-sections. The Lake Con-
stance simulation (see section 6.2) has been carried out for demonstrating the models
ability to reproduce currents and stratification with general vertical coordinates over
steep bathymetry. We would like to acknowledge Lars Umlauf (EPFL, Lausanne,
Switzerland) for suggesting this test case and providing the bathymetry. Finally,
the North Sea simulation (see section 6.3) shows the ability of GETM to carry out
numerically stable simulations with reasonable results also for larger domains such
as shelf seas. The presented annual simulation is fully baroclinic with prognostic
temperature and salinity calculation under consideration of tidal forcing.

Finally, a list of all symbols used in this report are listed in the appendix (chapter
7) and the references are given.



Chapter 2

Physics

2.1 Hydrodynamic equations

2.1.1 Three-dimensional momentum equations

For geophysical coastal sea and ocean dynamics, usually the three-dimensional hy-
drostatic equations of motion with the Boussinesq approximation and the eddy vis-
cosity assumption are used (Bryan [1969], Coz [1984], Blumberg and Mellor [1987],
Haidvogel and Beckmann [1999], Kantha and Clayson [2000b]). In the flux form, the
dynamic equations of motion for the horizontal velocity components can be written
in Cartesian coordinates as:

oyu + 0, (uvw) — 0, (v + v)0,u)

+a (8m(u2) + 0y (uv) — 8, (244 0,u) — 0, (A (Dyu + 0,v))

(2.1)
~po- | "o i) = =90,
O + 8, (vw) — 8, (v + 1),
t+a (@(Uu) +0,(v?) — 8, (2470,0) — B, (AV (Dyu + Byv)) .

¢
+fu—/ awbdz') = —gd,C.

12
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The vertical velocity equation reduces to the so-called continuity equation:

Oyu + 0yv + 0, w = 0. (2.3)

Here, u, v and w are the ensemble averaged velocity components with respect to the
x, y and z direction, respectively. The vertical coordinate z ranges from the bot-
tom —H (x,y) to the surface (¢, z,y) with ¢ denoting time. v, is the vertical eddy
viscosity, v the kinematic viscosity, f the Coriolis parameter, and g is the gravita-
tional acceleration. The horizontal mixing is parameterised by terms containing the
horizontal eddy viscosity AM, see Blumberg and Mellor [1987]. The buoyancy b is
defined as

b=—

P — Do
g

. (2.4)

with the density p and a reference density py. The last term on the left hand sides of
equations (2.1) and (2.2) are the internal (due to density gradients) and the terms
on the right hand sides are the external (due to surface slopes) pressure gradients.
In the latter, the deviation of surface density from reference density is neglected (see
Burchard and Petersen [1997]). The derivation of equations (2.1) - (2.3) has been
shown in numerous publications, see e.g. Pedlosky [1987], Haidvogel and Beckmann
[1999], Burchard [2001c].

In hydrostatic 3D models, the vertical velocity is calculated by means of equation
(2.3) velocity equation. Due to this, mass conservation and free surface elevation
can easily be obtained.

Drying and flooding of mud-flats is already incorporated in the physical equations
by multiplying some terms with the non-dimensional number o which equals unity
in regions where a critical water depth D,,; is exceeded and approaches zero when
the water depth D tends to a minimum value D,,;,:

azmin{l,m}. (2.5)
D crit T Dmm

Thus, a = 1 for D > D,.;;, such that the usual momentum equation results ex-
cept for very shallow water, where simplified physics are considered with a balance
between tendency, friction and external pressure gradient. In a typical wadden sea
application, D..; is of the order of 0.1 m and Dy, of the order of 0.02 m (see

Burchard [1998)).
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2.1.2 Kinematic boundary conditions and surface elevation
equation

At the surface and at the bottom, kinematic boundary conditions result from the
requirement that the particles at the boundaries are moving along these boundaries:

w = 04¢ 4+ u0;C + v0,( for z = (, (2.6)

w = —ud,H —vo,H for z = —H. (2.7)

2.1.3 Dynamic boundary conditions

At the bottom boundaries, no-slip conditions are prescribed for the horizontal ve-
locity components:

u=0, v=0. (2.8)

With (2.7), also w = 0 holds at the bottom. It should be noted already here, that
the bottom boundary condition (2.8) is generally not directly used in numerical
ocean models, since the near-bottom values of the horizontal velocity components
are not located at the bed, but half a grid box above it. Instead, a logarithmic
velocity profile is assumed in the bottom layer, leading to a quadratic friction law,
see section 4.5.

At the surface, the dynamic boundary conditions read:

(vy +v)0,u = ar?,

(2.9)
(v +v)0,v =ar?,

The surface stresses (normalised by the reference density) 72 and 7¢ are calculated
as functions of wind speed, wind direction, surface roughness etc. Also here, the
drying parameter « is included in order to provide an easy handling of drying and
flooding.



2.1. HYDRODYNAMIC EQUATIONS 15

2.1.4 Lateral boundary conditions

Let G denote the lateral boundary of the model domain with the closed land bound-
ary G° and the open boundary G° such that GEUG° = G and G° N G° = (). Let
further @ = (u, v) denote the horizontal velocity vector and i, = (—v,u) its normal
vector. At closed boundaries, the flow must be parallel to the boundary:

i, - VG¢ =0 (2.10)

with V = (8,, 0,) being the gradient operator.

For an eastern or a western closed boundary with VG¢ = (0,1) this has the conse-
quence that u = 0 and, equivalently, for a southern or a northern closed boundary
with VG = (1,0) this has the consequence that v = 0.

At open boundaries, the velocity gradients across the boundary vanish:

Vot - VG =0, V- VG° =0, (2.11)

with ﬁn = (—0y, 0;) being the operator normal to the gradient operator.

For an eastern or a western open boundary with this has the consequence that
O;u = 0,v = 0 and, equivalently, for a southern or a northern open boundary this
has the consequence that d,u = 9,v = 0.

At so-called forced open boundaries, the sea surface elevation ( is prescribed. At
passive open boundaries, it is assumed that the curvature of the surface elevation
normal to the boundary is zero, with the consequence that the spatial derivatives of
the surface slopes normal to the boundaries vanish.

2.1.5 Vertically integrated mode

In order to provide the splitting of the model into an internal and an external mode,
the continuity equation and the momentum equations are vertically integrated. The
vertical integral of the continuity equation together with the kinematic boundary
conditions (2.6) and (2.7) gives the sea surface elevation equation:

0, = —0,U — 9,V (2.12)

with
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¢ ¢
Uz/ udz, Vz/ vdz. (2.13)
-H -H

Integrating the momentum equations (2.1) and (2.2) vertically results in:

¢
U+ 1 + oz(/ (Opu® + 0y (uv)) dz

—H

—Ty — /C (8, (2A} 0pu) — 8y (A (Byu + 9,v)) ) dz (2.14)

—H

¢ ¢
—fV - / / Oybd dz) = —gDJ,¢
—H Jz

and

¢
OV +1 +a (/ (0 (wv) + 9yv?)) dz

H

- [ © (8, (24Y0,0) — 0, (AY(Byu+ 0,0)) ) dz (2.15)

—-H

¢ ¢
+fU—/ / dybdz' dz) = —gDo,(.
—HJz

Here, 777 and 7/ are bottom stresses. Their calculation is discussed in section 4.5. As
a first preparation for the mode splitting, these integrals of the momentum equations
can be formally rewritten as

R U? uv
oU + ﬁU\/UQ + V24 SE+ a(@x <5> + 0, (F)

7 _p, <2AhMDaw (%)) — 9, (AhMD <3y (%) O (%)))

—fV+54—-5p+ S}”;) = —gDd,C
(2.16)
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and

R uv &
oV + EV\/UQ +V2+ 5%+ a(@w? + ay3

—7Y -9, <2A,¥Day (%)) — 0, (A%D (ay (%) + 0y (%))) (2.17)
+fU +8Y — SY + s%) = —gDd,(

with the so-called slow terms for bottom friction

R
S =77 — EUW’ (2.18)
St =1) - ;V\/UQ + V2, (2.19)

horizontal advection

5% = /_CH (812 + 0, (uv)) dz — 8, (%) 9, <%> , (2.20)
si=[ <H (B(uv) + 9,07 dz — , (%) _ 9, (fracv2D), (2.21)

horizontal diffusion

¢
S5 = / (9, (2AM9,0) — 9, (AM(0,u + 0,0)) ) dz

—H

~o. (2400, () ) -, (40 (o (5) +2: () )

(2.22)
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¢
Y = / (8, (2428,0) — 8, (AY (B,u + O,0)) ) d2
—H

(2.23)
1% U V
(o (5)) -2 (0 (2 (5) <2 (5)))
and internal pressure gradients
¢ ¢
SE = —/ / 0:bdz' dz (2.24)
—-HJz
and
¢ ¢
SY = —/ / o,bdz' dz. (2.25)
—H Jz

The drag coefficient R for the external mode is calculated as (this logarithmic depen-
dence of the bottom drag from the water depth and the bottom roughness parameter
zp is motivated in section 4.5):

R=|—>2 _|. (2.26)

D b
In (25%)

2.2 Tracer equations

The conservation equations for tracers ¢! with 1 < ¢ < N, (with N, being the number
of tracers), which can e.g. be temperature, salinity, nutrients, phytoplankton, zoo-
plankton, suspended matter, chemical concentrations etc. is given as:

0yc* + Oy (uc’) + 0y (ve') + 0, ((w + wi)c') — 9, (v0¢")
| S (2.27)
—0, (AT 9,¢") — 9,(AL0,c") = Q.

Here, v; denotes the vertical eddy diffusivity and A} the horizontal diffusivity. Ver-
tical migration of concentration with migration velocity w’ (positive for upward
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motion) is considered as well. This could be i.e. settling of suspended matter or
active migration of phytoplankton. * denotes all internal sources and sinks of the
tracer ¢’. This might e.g. be for the temperature equation the heating of water due
to absorption of solar radiation in the water column.

The coupling between the concentration equation and the momentum equations is
due to an algebraic equation of state:

p=np(c,c....cN ) (2.28)

with pg = gpo(¢ — 2z) being the hydrostatic reference pressure.
Surface of bottom boundary conditions for tracers are usually given by prescribed
fluxes:

v, =F'  forz=¢( (2.29)

and

v,0,¢' = —F} for z = —H, (2.30)

with surface and bottom fluxes F}' and F;* directed into the domain, respectively.
At open lateral boundaries, the tracers ¢™ are prescribed for the horizontal velocity
normal to the open boundary flowing into the domain. In case of outflow, a zero-
gradient condition is used.

The two most important tracer equations which are hard-coded in GETM are the
transport equations for potential temperature 7" in °C and salinity S in psu (practical
salinity units):

0T + 0y (uT) + 0y (vT) + 0, (wT) — 0,(1,0,T)

2.31

—a(ATaT)—a(ATaT)—% 230
c\<*h Y y\“*h Yy - 00
Cpp()

0S + 05 (uS) + 9y (vS) + 0,(wS) — 0,(,0,5)
(2.32)
—0,(A70,5) — 8,(A}8,S) = 0.
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On the right hand side of the temperature equation (2.31) is a source term for
absorption of solar radiation with the solar radiation at depth z, I, and the specific
heat capacity of water, ¢,. According to Paulson and Simpson [1977] the radiation
I in the upper water column may be parameterised by

I(z) = I (ae™™% + (1 — a)e ™). (2.33)

Here, I is the albedo corrected radiation normal to the sea surface. The weighting
parameter a and the attenuation lengths for the longer and the shorter fraction of the
short-wave radiation, 7; and 7y, respectively, depend on the turbidity of the water.
Jerlov [1968] defined 6 different classes of water from which Paulson and Simpson
[1977] calculated weighting parameter a and attenuation coefficients 7; and 7.

At the surface, flux boundary conditions for 7" and S have to be prescribed. For the
potential temperature, it is of the following form:

Qs + Q1+ Qp

V.0, T =
e C;;PO

for z = (, (2.34)
with the sensible heat flux, ), the latent heat flux, @); and the long wave back
radiation, @,. Here, the Kondo [1975] bulk formulae have been used for calculating
the momentum and temperature surface fluxes due to air-sea interactions. In the
presence of sea ice, these air-sea fluxes have to be considerably changed, see e.g.
Kantha and Clayson [2000b]. Since there is no sea-ice model coupled to GETM
presently, the surface heat flux is limited to positive values, when the sea surface
temperature T reaches the freezing point

Ty = —0.0575 S5 + 1.710523 - 1072 S} — 2.154996 - 107* S? ~ —0.0575 S,
(2.35)

with the sea surface salinity S, see e.g. Kantha and Clayson [2000a]:

Qs + Q1 + Q, for T, > Ty,
qurf = (236)
max{0, Qs + Q; + @}, else.

For the surface freshwater flux, which defines the salinity flux, the difference between
evaporation Qg (from bulk formulae) and precipitation @p (from observations or
atmospheric models) is calculated:
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S(Qr —Qp)
po(0) ’

where po(0) is the density of freshwater at sea surface temperature. In the presence
of sea-ice, the calculation of freshwater flux is more complex, see e.g. Large et al.
[1994]. However, for many short term calculations, the freshwater flux can often be
neglected compared to the surface heat flux.

Heat and salinity fluxes at the bottom are set to zero.

v,0,8 = for z = ¢, (2.37)

2.3 Vertical turbulent exchange

The eddy viscosity v; (for momentum) and eddy diffusivity v; (for tracers) need to be
parameterised by means of turbulence models. Such models may range from simple
algebraic prescription of profiles of v, and v; (see Perels and Karelse [1982]), via zero-
, one, or two-equation models (see e.g. Luyten et al. [1996]) to full Reynolds stress
closure models (see e.g. Launder et al. [1975]). In GETM, a compromise between
accuracy and computational effort is made in such a way, that usually two-equation
models are used.

The turbulence module of the Public Domain water column model GOTM (General
Ocean Turbulence Model, see http://www.gotm.net) which has been developed by
Burchard et al. [1999] is implemented into GETM. This allows for great flexibility in
the choice of the turbulence model and guarantees that a well-tested state-of-the-art
turbulence model is always at hand inside GETM.

The features of GOTM have been reported in a number of publications, see Bur-
chard and Bolding [2001], Burchard [2001a] and Burchard and Deleersnijder [2001]
and the citations therein. Various comparative calculations with in-situ turbulence
measurements have been carried out with GOTM, which gives some confidence into
the model, see e.g. Bolding et al. [2000], Burchard et al. [2001], Simpson et al. [2001]
and Stips et al. [2001].

GOTM has various options for turbulence models, but only some of them have been
proven to give reasonable results for vertical exchange. The research for improving
turbulence models is still ongoing. Presently, better parameterisations for surface
wave activity and internal wave activity are under development.

So far, the best experience inside GOTM has been made with k-¢ (see Launder and
Spalding [1972], Rodi [1980]) and Mellor-Yamada (Mellor and Yamada [1974] and
Mellor and Yamada [1982] two-equation models:

The basic form of the k-¢ model is the following (see Burchard [2001c]):
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O,k — 0, <(u + ﬁ) 8zk> =P+B—c¢ (2.38)
Ok
Vy g

0 — 0, <<V + 0—) 8z8> = E(clsp + 3. B — cc€), (2.39)

with the equation for turbulent kinetic energy, (2.38), and for its dissipation rate ¢,
(2.39). oy and o, denote turbulent Schmidt numbers for vertical diffusion of k£ and
e, respectively, and P and B are shear and buoyancy production, respectively with:

P=y ((8zu)2 + ((921))2) , B = —v,0,b, (2.40)

and cy., 9., and c3. are empirical parameters.

The Mellor-Yamada two-equation model (see Mellor and Yamada [1982]) uses a
slightly different equation for £ and a transport equation for the quantity kL with
the macro length scale L instead of an e-equation:

Ok — 0. (S,;V2kLOK) = P+ B —e, (2.41)
L L\’
8, (kL) — &, (Sl\/ﬁLaz(kL)) =S |BP+EB-(1+E () ||

(2.42)

Here, Sy, S;, Ev, Fs, and E3 are empirical parameters, and L, is an empirical length
scale related to the distance from surface and bottom.

Suitable bottom and surface boundary conditions for k£, ¢ and kL can be derived
from the law of the wall, although modifications are needed near the surface due
to breaking of surface waves (see Craig and Banner [1994], Craig [1996], Burchard
[2001b]).

The three turbulent parameter k, € and L are interrelated through:

k3/2
L=c,— (2.43)
9
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with the empirical parameter cy,.
From k and e, the eddy viscosity and diffusivity can finally be calculated by the
following relation:

k? k?
Y= G v, =c,—. (2.44)

Here, ¢, and cL are so-called stability functions usually depending on shear, strati-
fication and turbulent time scale, 7 = k/e.

Various sets of stability functions, which contain second-moment closure assump-
tions have been suggested. The most successful in terms of comparison to laboratory
and field data seems to be the closure introduced by Canuto et al. [2001].
Recently, Umlauf and Burchard [2001] suggested a generic two-equation model with
the TKE equation (2.38) and a length scale related transport equation for a variable
k™e™, see also Burchard [2001c]. The advantage of such a model is the higher number
of degrees of freedom. For well mixed flow with B = 0 for example, in addition to
Ce1, Ce2, Ok, Og, and cg now also n and m can be calibrated in such a way that
idealised physical situations can be reproduced. Here, cg denotes the value of ¢, for
P = ¢ and B = 0. This new generic model will be included into one of the next
releases of GOTM, such that it can be used in combination with GETM as well.
The turbulence model is coupled to the hydrodynamic model via the turbulence
production terms P and B as input and the eddy viscosity and diffusivity v, and v}
as output. Furthermore, surface and bottom roughness lengths are needed for the
boundary conditions inside the turbulence model. Finally, the three-dimensional
model needs to store two quantities out of k, ¢ and L since GOTM is a one-
dimensional model which has to read in the ”old” values of k, £ and L for each
horizontal position.



Chapter 3

Transformations

3.1 Layer integration

3.1.1 General vertical coordinates

As a preparation of the discretisation, the physical space is vertically divided into
N layers. This is done by introducing internal surfaces 2z, Kk = 1,..., N — 1 which
do not intersect, each depending on the horizontal position (z,y) and time ¢. Let

—H(z,y) = 20(x,y) < z1(z,y,t) < -+ < zn_1(z,y, 1) < zn (2,9, t) = ((z,y, 1)
(3.1)

define the local layer depths A, with

hk =2 — Rk—1- (32)

for 1 < k < N. For simplicity, the argument (z, y, ) is omitted in most of the cases.
The most simple layer distribution is given by the so-called o transformation (see
Phillips [1957] for a first application in meteorology and Freeman et al. [1972] for a
first application in hydrodynamics) with

k
op =751 (3.3)

and

Zr = DO’k (34)

24
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for 0 <k <N.
The o-coordinates can also be refined towards the surface and the bed:

_ tanh ((d; + dy)(1 4 o%) — d;) + tanh(d;)

—1 k=0,.... N
B tanh(d;) + tanh(d,) ’ v
(3.5)
such that z-levels are obtained as follows:

for 0 <k < N.

The grid is refined towards the surface for d, > 0 and refined towards the bottom for
d; > 0. When both, d, and d; are larger than zero, then refinement towards surface
and bed is obtained. For d, = d; = 0 the o-transformation (3.3) with £, = oy is
retained. Figure 3.1 shows four examples for vertical layer distributions obtained
with the o-transformation.

Due to the fact that all layer thicknesses are proportional to the water depth, the
equidistant and also the non-equidistant o-transformations, (3.3) and (3.5), have
however one striking disadvantage. In order to sufficiently resolve the mixed layer
also in deep water, many layers have to be located near the surface. The same holds
for the bottom boundary layer. This problem of o-coordinates has been discussed
by several authors (see e.g. Deleersnijder and Ruddick [1992], de Kok [1992], Gerdes
[1993], Song and Haidvogel [1994], Burchard and Petersen [1997]) who suggested
methods for generalised vertical coordinates not resulting in layer thicknesses not
proportional to the water depth.

The generalised vertical coordinate introduced here is a generalisation of the so-
called mixed-layer transformation suggested by Burchard and Petersen [1997]. It
is a hybrid coordinate which interpolates between the equidistant and the non-
equidistant o-transformations given by (3.3) and (3.5). The weight for the interpo-
lation depends on the ratio of a critical water depth D, (below which equidistant
o-coordinates are used) and the actual water depth:

zr=2D (0170']9 + (1 — 017)619) (37)
with

— min (Bk = Br-1) — %(Uk — Of-1)
= ( (e — o) — (5 — 1) ’1> ' 38)
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o-coordinates, d, =0, d; =0 o-coordinates, d, = 1.5, d;, =0
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Figure 3.1: o-transformation with four different zooming options. The plots show
the vertical layer distribution for a cross section through the North Sea from Scar-
borough in England to Esbjerg in Denmark. The shallow area at about x = 100 nm
is the Doggerbank.

and oy from (3.3) and fj, from (3.5).

For inserting k¥ = N in (3.8) and d; = 0 and d, > 0 in (3.5), the mixed layer
transformation of Burchard and Petersen [1997] is retained, see the upper two panels
in figure 3.2. Depending on the values for D, and d,, some near-surface layer
thicknesses will be constant in time and space, allowing for a good vertical resolution
in the surface mixed layer.

The same is obtained for the bottom with the following settings: k¥ = 1, d; > 0 and
d, = 0, see the lower two panels in figure 3.2. This is recommended for reproducing
sedimentation dynamics and other benthic processes. For d; = d, > 0 and k =1
or k = N a number of layers near the surface and near the bottom can be fixed to
constant thickness. Intermediate states are obtained by intermediate settings, see
figure 3.3. Some pathological settings are also possible, such as £k = 1, d; = 1.5 and
d, = 5, see figure 3.4.
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upper y-coordinates, d,, = 1.5, d, =0 upper y-coordinates, d, =5, d; =0

-60
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lower ~y-coordinates, d, =0, d; = 1.5 lower y-coordinates, d, =0, d, =5
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z / nm z / nm

Figure 3.2: Boundary layer transformation (or 7 transformation) with concentration
of layers in the surface mixed layer (upper two panels) and with concentration of
layers in the bottom mixed layer (lower two panels). The critical depth D, is here
set to 20 m, such that at all shallower depths the equidistant o-transformation is
used. The same underlying bathymetry as in figure 3.1 has been used.

3.1.2 Layer-integrated equations

There are two different ways to derive the layer-integrated equations. Burchard and
Petersen [1997] transform first the equations into general vertical coordinate form
(see Deleersnijder and Ruddick [1992]) and afterwards integrate the transformed
equations over constant intervals in the transformed space. Lander et al. [1994]
integrate the equations in the Cartesian space over surfaces z; by considering the
Leibniz rule

/ Y o dz =0, / Y Fde— Fla)0um + Flze )00 1 (3.9)

for any function f. For the vertical staggering of the layer notation see figure 4.4.
More details about the layer integration are given in Burchard and Petersen [1997].
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upper y-coordinates, d, =5, d; = 1.5 lower ~y-coordinates, d, = 1.5, d; =5
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Figure 3.3: Boundary layer transformation (or 7 transformation) with concentration
of layers in both, the surface mixed layer and the bottom mixed layer. Four different
realisations are shown. The critical depth D, is here set to 20 m, such that at all
shallower depths the equidistant o-transformation is used. The same underlying
bathymetry as in figure 3.1 has been used.

upper 7y-coordinates, d, = 1.5, d; =5 lower y-coordinates, d, =5, d, = 1.5

0 50 100 150 200 250
z / nm

Figure 3.4: Two pathological examples for the boundary layer transformation. The
critical depth D, is here set to 20 m, such that at all shallower depths the equidistant
o-transformation is used. The same underlying bathymetry as in figure 3.1 has been
used.
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With the further definitions of layer integrated transport,

2k Rk
Pr = / udz, g = / vdz, (3.10)
Zk—1 Rk—1

layer mean velocities,

D gk

= L = L 3.11
Uk hk ) Vk hk ) ( )
and layer averaged tracer concentrations and buoyancy,
) 1 2k 1 2k
Cp = — c'dz, by == — bdz, (3.12)
b 2p—1 b 2K—1
and the grid related vertical velocity,
Wy = (W — u0pz — VOyZ) =, , (3.13)
the continuity equation (2.3) has the layer-integrated form:
8thk + (9wpk + aka + Wy, — W1 = 0. (314)

It should be noted that the grid related velocity is located on the layer interfaces.
After this, the layer-integrated momentum equations read as:

0Dk + Wity — W—1Uk—1 — Tp + Th_y
+04{5;c(ukpk) + Oy (vipk)

(3.15)
—0, (2AY hyByur) — 0y (AM bk (Byu + Bpvi)) — fa

—h,k (%h]v(a;b)]v + Z %(h’] + h]+1)(a:b)1> } = _ghkawg’
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O0iqi, + WU — Wh—1Uk—1 — ’7',3: + T,Z:_l
+a{5x(uqu) + Oy (Vi k)

(3.16)
—0y (2A4) hy,0yvi) — Oy (AR hyo(Oyur + Osvi)) + [k

(hj + hj+1)(3§b)j) } = —ghy0,¢

with suitably chosen advective horizontal velocities 4 and vy (see section 4.7), the
shear stresses

T = (n0,u),, (3.17)

and

Ty = (10,v),, (3.18)

and the horizontal buoyancy gradients

1 bry1 — b
0:b), = =(05b + Opby) — Op2p———— 3.19
( z )k 2( k+1 k) Zk%(%r1 + h) ( )
and
1 br+1 — bg
0¥b), = =(0,b + O,by) — Oz ———. 3.20
( Yy )k 2( yVk+1 Y k) yz,c%(hk;+1+hk) ( )

The layer integration of the pressure gradient force is discussed in detail by Burchard
[1996] and Burchard and Petersen [1997].

A conservative formulation can be derived for the recalculation of the physical ver-
tical velocity w which is convenient in the discrete space if w is evaluated at the
layer centres (see Deleersnijder and Ruddick [1992]):
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1
Wk = 37— (3t(hkzk—1/2) + 0p(Pr2k—1/2) + Oy(qr2k—1/2) + Wrak — wk—lzk—l) .

by,
(3.21)

It should be mentioned that w only needs to be evaluated for post-processing reasons.
For the layer-integrated tracer concentrations, we obtain the following expression:

Oy (hicy) + Ox(prch) + Oy(arch) + (Wi + w}) &), — (Wp—1 + wj_1)E_,

— (10,6 )k + (V[0,¢") 1 — O (Afhkﬁch) — 0 (A{hkaycfc) = Q..
(3.22)

It should be noted that the "horizontal” diffusion does no longer occur along geopo-
tential surfaces but along horizontal coordinate lines. The properly transformed
formulation would include some cross-diagonal terms which may lead to numerical
instabilities due to violation of monotonicity. For an in-depth discussion of this
problem, see Beckers et al. [1998] and Beckers et al. [2000].

3.2 Horizontal curvilinear coordinates

In this section, the layer-integrated equations from section 3.1 are transformed to
horizontal orthogonal curvilinear coordinates. Similarly to general coordinates in the
vertical, these allow for much more flexibility when optimising horizontal grids to
coast-lines and bathymetry. Furthermore, this type of coordinates system includes
spherical coordinates as a special case. The derivation of the transformed equations
is carried out here according to Haidvogel and Beckmann [1999], see also Arakawa
and Lamb [1977].

A rectangular domain with non-dimensional side lengths and with local Cartesian
coordinates X and ) is mapped to a physical domain with four corners in such a
way that the local coordinates of the physical space, (&;,&,) are orthogonal to each
others everywhere:

X =&, V& (3.23)

The infinitesimal increments in the physical space, d{, and d &, are related to the
infinitesimal increments in the transformed space, d X and d ) by so-called metric
coefficients m(z,y) and n(z,y):
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dé, = (i) dx, d¢,= (%) dy. (3.24)

m

These metric coefficients have the physical unit of [m~!]. With m = n =const,
Cartesian coordinates are retained, and with

1 1
n=—, (3.25)

m=——,
T'E COS @ TR

spherical coordinates with X = X\ and ) = ¢ are retained (with the Earth’s radius
rE, longitude A and latitude ¢).

With these notations, the layer-integrated equations (3.14), (3.15), and (3.16) given
in section 3.1 can be formulated as follows:

Continuity equation:

h D — Wi

Oy (—k ) + Ox (&) + 0y (q—k) + TR TRl (3.26)
n m mn

Momentum in ¢, direction:

— — - x X
Pk WUk — W—1Uk—1 T — Ty
O | — ) +

mn

mn mn
U v 1 1
saon () o (52) o (0 (3) -5 (7))

2AM AM
_82( < :Lhk maxuk> — 83; ( I;nhk (nayuk + maka)>

h 1 1 h
B (—hN(a}b)N + 5(}% + hj+1)(3§zb)j) } = —ggkaxC-

(3.27)
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Momentum in &, direction:

. . hY Y
gk WV — Wi 1Vk-1 T — Tp1
o () + =
mn mn

rof o (105) 0y (%) e (w00 (1) s (1))

2AM AM
—a-y ( Tknhk nay?)k> — Oy ( knhk (nayuk + m@,\gvk)>

(3.28)

In (3.27) and (3.28), the velocity and momentum components u; and p; are now
pointing into the §;-direction and v and g, are pointing into the &,-direction. The
stresses 75 and 7 are related to these directions as well. In order to account for
this rotation of the velocity and momentum vectors, the rotational terms due to the
Coriolis rotation are extended by terms related to the gradients of the metric coeffi-
cients. This rotation is here not considered for the horizontal diffusion terms in order
not to unnecessarily complicate the equations. Instead we use the simplified formu-
lation by Kantha and Clayson [2000b], who argue that it does not make sense to use
complex formulations for minor processes with highly empirical parameterisations.
Finally, the tracer equation is of the following form after the transformation to
curvilinear coordinates:

hyct ct ct WGt — Wy 10
3t(—k k)-f—a)((pk k>+ay (Qk k)—i— b il
mn n m mn

B (110.¢%), — (V}02C") k-1 (3.29)
mn

ATh, p AT'h, ; Qi
—a)( ( l:’), m@xck) —83; ( I’;)’L nayck> = m—l;l,




Chapter 4

Discretisation

4.1 Mode splitting

The external system consisting of the surface elevation equation (2.12) and the
transport equations (2.16) and (2.17) underlies a strict time step constraint if the
discretisation is carried out explicitly:

At < B (Aix + Aiy) \/2LTD} 71. (4.1)

In contrast to that, the time step of the internal system is only depending on the
Courant number for advection,

Az A
At < min{ ’ Y } , (4.2)

Y
umax Umax

which in the case of sub-critical flow is a much weaker constraint. In order not to
punish the whole model with a small time step resulting from the external system,
two different approaches of mode splitting have been developed in the past.

The first approach, in which the external mode is calculated implicitly, has been
proposed by Madala and Piacsek [1977]. This method is numerically stable (if ad-
vection is absent) for unconditionally long time steps. The temporal approximation
is of second order if semi-implicit treatment is chosen. In such models, the external
and internal mode are generally calculated with the same time steps (see e.g. Back-
haus [1985]). The introduction of interactions terms like (2.18) - (2.25) is thus not
necessary in such models.

34
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Another approach is to use different time steps for the internal (macro times steps
At) and the external mode (micro time steps At,,). One of the first free surface
models which has adopted this method is the Princeton Ocean Model (POM), see
Blumberg and Mellor [1987]. This method has the disadvantage that interaction
terms are needed for the external mode and that the consistency between internal
and external mode is difficult to obtain. The advantage of this method is that
the free surface elevation is temporally well resolved which is a major requirement
for models including flooding and drying. That is the reason why this method is
adopted here.

The micro time step At,, has to be an integer fraction M of the macro time step At.
At,, is limited by the speed of the surface waves (4.1), At is limited by the current
speed (4.2). The time stepping principle is shown in figure 4.1. The vertically
integrated transports are averaged over each macro time step:

n+(M—0.5)/M

n+1/2 l
U5 = 2. Ui (4.3)
l=n+0.5/M
and
9 ] n+(M—0.5)/M
-+ _ l
S VD DI (44)
l=n+0.5/M
such that

n+1/2 rrn+1/2 «rn+1/2 rrn+1/2
e B e ¥ M (e (Y (4.5)

At Az - Ay

4.2 General vertical diffusion equation

In the following, the discretisation of a simple diffusion equation

9,X — 8,(v3,X) = Q (4.6)

will be shown for a general physical quantity X which could be momentum u or v or
a tracer or turbulent quantity. () denotes all source terms which will be discretised
on the ”old” time level. After layer integration, (4.6) is of the form
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Figure 4.1: Sketch explaining the organisation of the time stepping.

= heQ (4.7)
k—1

8t(thk) — (I/azX) + (VazX)

k

where X}, and Qj, denote layer averages of X and @, respectively®.
with the Neumann-type boundary conditions

v0,X = F; for z = (, (4.8)

and

vo,X = —F, for z = —H, (4.9)

the semi-implicit discretisation is for a mean flow quantity such as momentum or
tracers of the following form:

'With time-varying depth some extra terms would appear due to the Leibniz rule (3.9). These
would however be compensated by advective terms which are here contained in the source term )
for simplicity.
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APIX T — Ry Xy Xy — X3
—Fi+ vy s = MR QY (4.10)
At NUL(Re + ByR) NN
he X - X v Xy = Xpre
At 5 (heiy + hy™)
(4.11)

n+o n—+o
Xk B chfl

+Vl?— o o
(T )

= hy Q% for 1 <k <N,

n+1 yn+1 nyYyn n+o n+o
h’l Xl _h’le n X2 _Xl

— — F, =htQ7 4.12
At 41 %(hg—f—a' + h717.+0') b 191> ( )

with
Xpt =0 X + (1—0) X} (4.13)

and
Rt = ohf ™ 4+ (1 — o)hy. (4.14)

Upper indices denote time levels (n for "old” and n + 1 for "new”) and lower in-
dices denote the vertical discrete location. Horizontal indices (7, ) are omitted for
simplicity. Thus, for o = 0 a fully explicit, for ¢ = 1 a fully implicit and for ¢ = 0.5
the Crank-Nicholson second-order in time scheme is obtained.

This semi-implicit differencing leads for each transport equation to a system of linear
equations with the following tri-diagonal matrix:

ocAtvy
(PN + hy)

ocAtvy ) _
3 (BN + By

n+1
—XNn11 1
2

+ X (h’]\,“ +
(4.15)
(1—-0)Atvy_,

Xn_ n—+o n+o
NTUL(R + hte)

(1—o0)Atvy
3 (AN + h%)

+XT <h§i, - ) + ALF, + ALALQT,
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oAt v? oAt VP
+X"+1 (h’fH‘l + n+o ki}z o n+o kn o )
k k s+ ) S(hty + k)
_xn oAt v} _
ST+ )
(4.16)
X" (1 - U)At Vl?—l
R+ )
(1—0)Atvp | (1—o0)Atv} >
+Xn(hn_ nr+o n+ao n+ao 'flko'
CR ST+ S (Rt + )
(1—-o0)Atv}
+ X7 — — + At h7?Q7 for1 <k < N,
kH%(hkil + hk+ ) ke
At P
Xn+1 <hn+1 + g 1 )
1 1 %(hg%—a + h7lz+a)
At v
_xntl g L =
2 %(h;l-l-a + h{H—U)
(4.17)
nfl vn (1—o0)Atv}
X7 (hl 1 prto Lo pnto
2( 2 + 1 )
n (1—0’)At1/{b nyn
+X2l + At F, + At hTQY,

2(h3+0 + hvlz+a)

which is solved by means of the simplified Gaussian elimination, see e.g. Samarskij

[1984].

It should be noted that the source term () is often treated quasi-implicitly, following
a suggestion made by Patankar [1980] (see also Deleersnijder et al. [1997]). This is
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Figure 4.2: Layout of the model horizontal model grid in Cartesian coordinates.
Shown are the reference boxes for the T-points. The following symbols are used:
+: T-points; x: U-points; x: V-points; e: X-points. The inserted box denotes grid
points with the same index (i, 7).

done in order to guarantee positive discrete solutions for physically positive quan-
tities such as concentrations or turbulent quantities. For details of this numerical
scheme, which used for positive quantities in GETM, see also Burchard [2001c].

4.3 Spatial discretisation

For the spatial discretisation, a staggered C-grid is used, see Arakawa and Lamb
[1977]. The grid consists of prism-shaped finite volumes with the edges aligned
with coordinates. The reference grid for the tracer points (from now on denoted
by T-points) is shown in figures 4.2 and 4.4. The velocity points are located such
that the corresponding velocity components are centralised on the surfaces of the
T-point reference box, the u-velocity points (from now on U-points) at the western
and eastern surfaces, the v-velocity points (from now on V-points) at the southern
and northern surfaces and the w-velocity points (from now on W-points) at the
lower and upper surfaces. The indexing is carried out with i-indices in eastern (X-)
direction, with j-indices in northern ()-) direction and with k-indices in upward (z-)
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Figure 4.3: Grid layout and indexing of corner points for curvilinear grids.

direction, such that each grid point is identified by a triple (7, 7, k). A T-point and
the corresponding eastern U-point, the northern V-point and the above W-point
have always the same index, see figures 4.2 and 4.4. The different grid points cover
the following index ranges:

T-points: 1 <@ <imax, 1<J < Jmax, 1<k < Bax
U—points: 0 S i S imax: 1 S .7 S jmaxa 1 S k< kmax

Vpoints: 1 <7 < ina 0<7 < jmaes 1 <K < K (4.18)

W'pOintS: 1 S { S imax: 1 S .7 S jmaxa 0 S k S kmax

On the T-points, all tracers such as temperature 7', salinity S, the general tracers ¢’
and the density are located. All turbulent quantities such as eddy viscosity v; and
eddy diffusivity v; are located on the W-points.

For curvilinear grids, several arrays for spatial increments Az and Ay have to be
defined:
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Azf; = |[5(Xigor+Xij — Xiorjo1 — Xiony)||

Azt = || (Xiprgo1 + Xiprg — Xicrjo1 — Ximaj)||

Azy; = |[Xi; — Xio1y

Acly = |[3(Xiy = Xy

Ays; = |[5(Xiny + X — Xi1j1— Xij)|| (4.19)
Ayt = [[Xij — Xij]

Ayt = |7 Xicrir + X — Ximag-1 — Xijo)||

Ayl = |[5(Xig — X))

where || X; ; — Xi_15]| = ((wij — mi—1,)? + (yiy — yi_l,j)2)1/2. The superscripts ¢, u, v, +
in (4.19) indicate whether a Az or Ay is centrered at a T-, U-, V-, or X-point, re-
spectively. For the locations of the corner points X; ; = (;;, ¥i;), see figure 4.3.

4.4 Lateral boundary conditions

Usually, a land mask is defined on the horizontal numerical grid. This mask is
denoted by a® for T-points, a* for U-points and a” for V-points with a?, a“, and
a’ being integer fields. A T-point is either a land point (¢* = 0) or a water point
(a* > 0). All U- and V-points surrounding a land point are defined as closed
boundary and masked out: a* = 0 and a” = 0. The velocities on such closed
boundaries are always set to 0.

Open boundaries are defined by a®* > 1 for T-points. Forced boundary points are
marked by ¢ = 2 and passive boundary points by a* = 3. All other T-points are
characterised by a®* = 1. For velocity points, three different types are defined at the
open boundaries. U-points are classified by a* = 3 if both the T-points east and
west are open boundary points and by a* = 2 if one adjacent T-point is an open
boundary point and the other an open water point with a®* = 1. The same is carried
out for V-points: They are classified by a” = 3 if both the T-points south and north
are open boundary points and by a” = 2 if one adjacent T-point is an open boundary
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— 1

Figure 4.4: Layout of the model vertical model grid through the U-points. Shown
are the reference boxes for the T-points. The following symbols are used: +: T-
points; x: U-points; A: W-points; o: X"-points. The inserted box denotes grid
points with the same index (7, k). The grid in the (j, k)-plane through the V-points
is equivalent.

point and the other an open water point with a* = 1. U-points which are adjacent
to T-points with a®* = 2 and which are not denoted by a* = 2 or a* = 3 are the
external U-points and are denoted by a* = 4. The same holds for V-points: Those
which are adjacent to T-points with a® = 2 and which are not denoted by a” = 2 or
a” = 3 are the external V-points and are denoted by a” = 4.

For a simple example of grid point classification, see figure 4.5.

When the barotropic boundary forcing is carried out by means of prescribed surface
elevations only, then the surface elevation ( is prescribed in all T-points with a* =
2. For passive boundary conditions (a* = 3), where the curvature of the surface
elevation is zero normal to the boundary, the surface slope is simply extrapolated
to the boundary points. For a boundary point (i, 7) at the western boundary this
results e.g. in the following calculation for the boundary point:
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Figure 4.5: Classification of grid points for a simple 5 x 5 configuration (imax =
Jmax = D). On the locations for T-, U- and V-points, the values of ¢*, a*, and a?,
respectively, are written. The northern and eastern boundaries are closed and the
western and southern boundaries are open and forced.

Gij = Giv1,j + (Gir1j — Giv2g) = 2Cir1,5 — Givayj- (4.20)

4.5 Bed friction

As already mentioned earlier in section 2.1.3, caution is needed when discretising
the bottom boundary conditions for momentum, (2.8). They are an example for a
physical condition which has to be modified for the numerical discretisation, since
the discrete velocity point nearest to the bottom is half a grid box away from the
point where the boundary condition is defined. Furthermore, due to the logarithmic
law, high velocity gradients are typical near the bed. Simply setting the discrete
bottom velocity to zero, would therefore lead to large discretisation errors. Instead,
a flux condition using bottom stresses is derived from the law of the wall, see e.g.
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Burchard [2001c].
For the determination of the normalised bottom stresses

T . (4.21)
Po
y
Do ulu? (4.22)
Po
with the friction velocities u? = \/7/py with 7, = /(7%)? + (77)?, assumptions

about the structure of velocity inside the discrete bottom layer have to be made.
We use here the logarithmic profile

u@) _ 1, (2’ + 2 ) ’ (4.23)

Us K 28
with the bottom roughness length zj, the von Kdrmén constant x = 0.4 and the
distance from the bed, z’. Therefore, estimates for the velocities in the centre of the
bottom layer can be achieved by:

bz 0.5h b
K 23
by 0.5h b
vp = % n (%) . (4.25)
K 20

For h; — 0, the original Dirichlet-type no-slip boundary conditions (2.8) are re-
tained. Another possibility would be to specify the bottom velocities u, and v, such
that they are equal to the layer-averaged log-law velocities (see Baumert et al. [1989],
Baumert and Radach [1992]). The calculation of this is however slightly more time
consuming and does not lead to a higher accuracy.

The roughness length at the bottom, 2} has to be defined. This is done here as
follows (see e.g. Kagan [1995]):

2= 0.1% +0.03h2. (4.26)

*
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with the molecular viscosity v, the friction velocity u® and the height of the bot-
tom roughness elements, h3. The formula (4.26) interpolates between the limits of
completely smooth (h) = 0) and completely rough bottom (h} > v/ul). Since u®
is a function of the roughness length itself, equations (4.24), (4.25) and (4.26) are
implicit and have to be iterated. In GETM, generally, two iterations per time step

are used.

4.6 Continuity equation
The continuity equation in curvilinear coordinates must be discretised as follows:

higw = Pijr _
At

 Pigk AV — Pic1i kAU G kAT — G kAT (4.27)
Az Ay Az Ays;

—Wijk + Wijk—1

The discrete equation (4.27) will be used for the calculation of the grid-related
vertical velocity w; ;x for k =1,..., N with w; ;0 = 0.

The surface elevation equation (vertical sum of (3.26)) is then discretised in the
following way:

Gij — Gig UijAyp; — UisjAy ;o VigAx]; — Vig1Axd
—_ _ (4.28)
At Az AY; Az AY;

4.7 Momentum and tracer advection and diffu-
sion

4.7.1 Momentum advection

For the discretisation of the momentum advection terms, two conceptionally dif-
ferent methods have been implemented in GETM. The first is the straight-forward
multidimensional advection scheme, which is here realised as the first-order upwind
scheme, see section 4.7.1.1.
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In order to make use of the higher-order directional-split methods for tracers (see
section 4.7.5), an alternative method is implemented, in which the complete advec-
tion step is first made, and then the resulting advection terms, which are needed
for the calculation of the slow terms, see equations (2.20) and (2.21)) are calculated
from this (see section 4.7.1.2).

4.7.1.1 Multidimensional approach

The advective terms in the momentum equation are discretised in a momentum-
conservative form. This is carried out here for the advective terms in the u-equation
(3.27) and the v-equation (3.28) (after multiplying these equations with mn).

First advection term in (3.27):

U
(mna,y <—l:fk)> o ~
Z!]’

1 N N
5 (Pit1gk + Pigk) Uis 1,56 AYS 1 — 5(Pigik + Pic1,jk) Ui j e AV
u U
Az Ay

(4.29)

For an upwind scheme, the inter-facial velocities which are defined on T-points are
here calculated as:

Ui—jk  for 3(pije + Pi-1ik) >0
ﬂi,j,k: = (430)
Ui jk else.

Second advection term in (3.27):

UkPk N
(mnayy (—m ))Z]k =

1 ~ + _1 ~ +
5 (Gisgk + Gig o) Ui kAT — 5 (Gis g1k + Gig-1p)Uijo1 kAT
2y 2,7

(4.31)

For an upwind scheme, the inter-facial velocities which are defined on X-points are
here calculated as:

1
Uijr  for 3(qiy1jk + Gigx) >0
ai,j,k = (4.32)
Ui, j+1,k else.
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First advection term in (3.28):

v
(mn Oy <—ka)> ~
n 1,5,k

1 ~ + 1 ~ +
5 (Pirik + Dijr) Vi kAU — 5(Pic1 ik + Pic1,ik) Uie1,i kAU
Z’] Z’]

(4.33)

For an upwind scheme, the interfacial velocities which are defined on X-points are
here calculated as:

1
Vigk  fOr 3(Divik + Pijx) >0
B = (4.34)
Vit14k  else.

Second advection term in (3.28):

Uk N
(mny (),

1 5 c 1 ~ c
5 (Gigrik + Q) Vi kAT 500 — 5k + Q1) Vi ju AT
v v
Az Ay

(4.35)

For an upwind scheme, the interfacial velocities which are defined on T-points are
here calculated as:

Vig—ik  for 5(qijk + Gij-1k) > 0
Uz’,j,k = (436)
Vijik else.

The same schemes for horizontal advection are used for the vertically integrated
advection terms in equations (2.16) and (2.17), the slow advection terms S% and S%
and their transformations to curvilinear coordinates.

The vertical advection terms in equations (3.27) and (3.28) can be discretised in an
upstream scheme as well.

Vertical advective flux in (3.27):

(Wrin); ; = 5 Witk + Wijk) ik (4.37)

[NR

with



48 CHAPTER 4. DISCRETISATION

1
wijr  for g(wipr ik +wijr) >0,
Uik = (4.38)
Ui, j,k+1 else.

Vertical advective flux in (3.28):

o 1 -
(@k1); 5 2 5 (Wijrr e + Wik Vijik (4.39)
with
ig  for g(wijiie +wigx) >0,
Vijk = (4.40)

Vijkt1  else.

4.7.1.2 Directional-split approach

Multidimensional treatment of advective terms in three-dimensional models is often
quite unhandy, especially when higher-order advection schemes are needed. On
the other hand, directional-split methods (which update the advected fields in each
directional step and then ”forget” the advection terms) as discussed in section 4.7.5,
cannot directly be used for momentum advection when the models are based on
mode splitting as e.g. GETM. The reason for this is that the three-dimensional
advection terms are also needed for calculating the slow terms of the barotropic
(external) mode, see equations (2.20) and (2.21).

The procedure suggested here is as follows. First, the pure momentum advection
equations are formally solved with the directional-split method described in section
4.7.5:

Oypr + Oy (Ukpk) + 8y (Ukpk) + Wity — W_1Ug_1 = 0, (4.41)

Orqy. + aw(uqu) + ay(quk) + WV — Wg—1V—1 = 0. (4.42)

The new solutions p; ; and ¢; ;, are however not further used, but instead the re-
sulting advective terms — (P jx — Pijk)/At and —(gij e — ¢ijx)/ At are later applied
to the momentum equations (together with other processes such as horizontal dif-
fusion, pressure gradients, etc.) and also used for the calculation of the slow terms
in (2.20) and (2.21).
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With this method, all higher-order directional-split advection schemes are now avail-
able for the momentum advection. The advective fluxes needed for this have to be
averaged from the conservative advective fluxes resulting from the continuity equa-
tion (4.27). Continuity will still be retained due to the linearity of the continuity
equation.

4.7.2 Horizontal momentum diffusion

The horizontal diffusion terms are discretised in momentum-conserving form as well.
For simplicity, this shown here for these terms as they appear in equations (3.27)
and (3.28), i.e. without multiplying them by mn.

First horizontal diffusion term in (3.27):

8;( (QAth maxuk> ~
n

.5,k

u. . J— u. . uv . J— u._ .
M c c ’L—|—1,j,k Z,],k M C Cc Z7.77"5 ¢ 15]’k
2401k DYl Ao T 2T A e
Lit1,5 i\
(4.43)
Second horizontal diffusion term in (3.27):
Amhy
Oy ( (ndyuy + mOxvy) ~
m ijik
E(AM + AV e+ AV AN ) R A
4 \itLitLE 5,j+1k 0,5,k i+1,3.k) Tiyj kS Vi,
Uij+1,k — Uigk  Vitlgk — Vigk
X( T JA+ : (4.44)
AYi; Tij

1
1 (Az]'\-/ll—l,j,k + AY .+ AY

M + +
K -1+ AN oue) B A

% Uijke — Yij—1k  Vitlj—1,k — Vij—1k
Ay Az}

J—1 i,j—1
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First horizontal diffusion term in (3.28):

2Aph
8y< WA;I knayvk) R~

1,5,k
Vijt+1k — Vi — U
c c Z:]"'lk 7.]; c 1.7’ %] 17k
240511, kAxi,j+1hz',j+1,k—A : = 2ATG AT
Yij+1 Yij
(4.45)

Second horizontal diffusion term in (3.28):

A
Ox ( A;;hk (nayuk + maka)> ~

i,k
1(A + A e+ AV e+ AL k) B A
4 i+1,5+1,k 1,7+1,k 1,5,k i+1,5,k 1,5,k ,j
x Uij+1,k — Uik _ Vit1,5,k — Vijk 4.46
A + Ax+ ( : )
Yiij ij

M
(A,J+1k+Az 1]+1k+Az 1]k+A1]k) h’j—ljkA'/L‘;——lj

% (Ui—l,j+1,k —Ui-15k  Vigk — Uz’l,j,k)
+ +
Ayi—l,j A%‘—l,j

It is assumed here that the horizontal momentum diffusivities A%k are located on
the T-points.

4.7.3 Tracer advection

After multiplying (3.29) with mn, the advective terms in this equation are discretised
as follows.
First advection term in (3.29):

(mn 0y (pkck>) ~ PikCij kDY — Di-1,5kCi1,j6AY 1 (4.47)
n 1]

C C
Az ; Ay

Second advection term in (3.29):

(m 5 (%%))  GigkCigk AV = Gij-1,kCi -1k AY] (4.48)
Y\ m iy Az Ays '
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Vertical advective fluxes in (3.29):
(u_)kék)i,j ~ wi,j’k)éi’j,k. (449)

The interfacial concentrations ¢; ;; are calculated according to upwind or higher
order directional split schemes, which are discussed in detail in section 4.7.5.

4.7.4 Horizontal tracer diffusion

As for the horizontal momentum diffusion (see section 4.7.2, also here, the discreti-
sation of the diffusion terms is shown here without multiplication with mn. Thus
the diffusion terms in equation (3.29) are discretised as follows:

First horizontal diffusion term in (3.29):

AT
(a,'\{< k km@;(ck)> ~
n ijik

Uu u CZ+1,],’C CZ,]JC
hi WAy —— 4.50

(AZT+1,J kT A 1,9,k

DN | =

Ciyjk — Ci—Ljk
u u 1,7, sJ s
(A 1,5,k + Az 1,4, k) hi—l,j,kAyi—l,j o

Second horizontal diffusion term in (3.29):

ATh;C
(93; < nay Ck> ) ~
( m i,j,k

c 2. 1 k C’) '7k
(AT e+ AL L) B ALY ”*A—” (4.51)
Yiri

DN | =

Ciik — Cii—
T v U Za]ak 1] I)k
5 (Aljk+AZj lk) i,j—lch iyj—1 A

ym 1

4.7.5 Higher order advection schemes

For the advection of an active tracer such as temperature, salinity or any physically
passive tracer such as oxygen concentration, the following properties are required to
properly reproduce dynamics of such tracers:
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e Local mass conservation: This is guaranteed by using the conservative
formulation of the advective terms, see equation (2.27) and equations (4.52)
and (4.69) below.

e Positivity: This property means that positive quantities stay positive during
the advection operation. This is fulfilled when the numerical solution after
each time step is within the range of the numerical solution before the time
step. Total Variation Diminishing schemes have this property.

e Low numerical diffusion: The only linear and positive advection scheme
is the first-order upwind scheme, which is known for high numerical diffusion
which might smooth out all interesting details of the numerical solution and
can therefore not be recommended for ocean models.

e Low numerical dispersion: Higher order linear models show numerical
dispersion which leads to unphysical overshoots and undershoots relative to
the physical solution. Thus positivity is easily violated.

During the last 20 years Total Variation Diminishing (TVD) advection schemes
have been developed, which are now state-of-the-art in various ocean models. In
the following, a numerical scheme is presented which is easy to implement in ocean
models and which fulfils the requirements mentioned above. The idea for this im-
plementation is adopted from Pietrzak [1998] who suggested the use of a directional
split method applying a one-dimensional advection scheme alternately in all spatial
directions. Here, some second-order and a third-order in space scheme with a slope
limiter will be tested for simple one-dimensional test cases (see section 4.7.5.1), two-
dimensional solid-body rotation (see section 4.7.5.2), a two-dimensional distortion
test (see section 4.7.5.3). For a lock exchange test (see section 5.2) and for the
advection of tracers through curvilinear coordinate grids, see section 5.1.3.

These high-order schemes should also be applied to the advection of momentum
and turbulent quantities such as the turbulent kinetic energy, k£, and the turbulent
dissipation rate, €. Since the continuity equation (3.14) as well as its discretised form
(4.27) are linear, the conservative reference boxes can in principle be referred to any
quantity by simply interpolating the transports around the reference box. For the
momentum, this has been already implemented into GETM. Tests are performed
in section 5.4 for a freshwater eddy and in section 6.1 for tidal currents in the
Sylt-Rgmg Bight. High-order momentum advection is further used for the Lake
Constance simulation in section 6.2.

High-order advection for turbulent quantities will be implemented into GETM soon.
One task would then be to point out scenarios in which the consideration of this ad-
ditional process is relevant. It should be noted that advection of turbulent quantities
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is generally neglected in three-dimensional modelling (for an exception see Delhez
et al. [1999] who show that advection of turbulent quantities is not important in a
shelf sea model).

4.7.5.1 One-dimensional experiments

In one spatial dimension, a general advection equation reads as

with a tracer ¥, and the velocity u which is here supposed to constant. It can be
immediately seen that in this case, the analytical solution can be formulated as

U(z,t) = V(z — ut,0) (4.53)

for any tracer ¥. For equidistant grid spacing, the discretisation of (4.52) is carried
out using the following scheme:

At

n+1/2 n mn mn

‘I’i+ /2 = vy — A—x( i+1/2 — 571/2) (4.54)

with the fluxes FY}, /2 calculated in a upstream-biased way:
= @) (4.55)
: = — x')dx'. .
i+1/2 At $i+1/2,uA$

Since ¥ is known only on the discrete points z;, it has to be interpolated be-
tween these points in order to carry out the integration in (4.55). For each interval
[%i_1/2, Tit1/2] this is done by deriving the polynomial ¥; with

Tit1/2+k _
/ \I/Z(.Tl) dl” = \Ifi+k, k= —1, 0, 1, (456)

Ti—1/24k

see e.g. Leonard [1979] and Pietrzak [1998]. This polynomial scheme is of third-
order accuracy in space and will here be denoted by Py. The resulting scheme can
be formulated in the following way:
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Ui+1/2 (\IJZ + %@;:_1/2(1 — |Ci—|—1/2|)(\11i+1 — \Ifz)) fOI' Ui+1/2 > 0,

Fi+1/2 =
Uit1/2 (\I’Hl + %(I)i_+1/2(1 — leiy1y2]) (Wi — \I’z‘+1)) else,
(4.57)
with the Courant number c;;1/2 = Ujt1/2At/Az and
q);:_l/g = Op1/2 + ﬁi+1/27‘;:_1/25 (I);_H/g = Q112 + ﬁi+1/27‘i_+1/25 (458)
where
1 1 1 1
iy = 5+ (1= 2lcivpel),  Bive =5 — (1 = 2lcinl), (4.59)
2 6 2 6
and
U, — U, U0 — U,
+ooo Gt Tl 4 T2 Tl 4.60
e Ty T T (4.60)

It should be noted that by formulation (4.57) the Py scheme is cast into the so-called

Lax-Wendroff form, which would be recovered for CDitrl o= o, o= 1.

In order to obtain a monotonic and positive scheme, the factors <I>Z'.tr1 /o are limited
in the following way:

F . — 0, min [ ®F 2 2y (4.61)
: max |0, min | ¢, , , , .
/2 T2 — ‘Cz‘+1/2| ‘Cz‘+1/2|

and, equivalently, for @, Jo- This so-called PDM-limiter has been described in de-

tail by Leonard [1991], who named the PDM-limited Py scheme also ULTIMATE
QUICKEST (quadratic upstream interpolation for convective kinematics with esti-
mated stream terms).

A non-equidistant version of the Py scheme is also derived and tested here. Since
this version can not easily be transformed into the Lax-Wendroff form, it will not
be used together with the PDM limiter given by relation (4.61).
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Some simpler limiters which do not exploit the third-order polynomial properties of
the discretisation (4.57) have been listed by Zalezak [1987]. Among those are the
MUSCL scheme by van Leer [1979],

. 1+ T;:-1/2
@;rlp — max |0, min ( 2, 27“;;1/2, — || (4.62)

and the Superbee scheme by Roe [1985],

(I)+

i+1/o — MaX [0, min(1, 27“2.:1/2), min(ritrl/z, 2)] i (4.63)

These two are included into the tests here, because they do in contrast to the Pg-
PDM scheme not require substantially more computational effort on non-equidistant
grids.

In the following, these schemes are tested by means of a simple one-dimensional test
case with constant velocity. A periodic domain with length L = 100 m and velocity
v = 1 ms™! is discretised in two ways, one equidistant and one non-equidistant
method:

1. with time steps At = 0.5 s, 0.25 s and 0.125 s and spatial increments of Ax
= 100 m, 50 m and 25 m, respectively, resulting for all cases in a Courant
number of ¢ = 0.5,

2. with time steps At = 0.25 s, 0.125 s and 0.0625 s and a non-equidistant grid-
spacing given by

L1—exp [ (1-%)°]
A.IZ' = N 5 (464)
Zi:l A:EZ

see figure 4.6 with N = i,,c = Jmax being the number of horizontal grid
boxes. This gives a maximum Courant number of ¢ = 0.88 and the ratio of
the smallest Ax; to the largest Ax; is 0.14.

The runtime is in all cases 7" = 1200 s, resulting in six complete revolutions through
the periodic domain. With, (4.53), ¥(z,0) = ¥(z,T) for all initial distributions W.
Figure 4.7 shows initial and final values for two different initial distributions of ¥,
a rectangular distribution and a Gaussian bell distribution with the limited and
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Figure 4.6: Non-equidistant grid spacing for the one-dimensional advection experi-
ments.

the unlimited Py scheme for Az = 1 m. The unlimited scheme has been advected
with the equidistant and the non-equidistant grid, the limited scheme only with
the equidistant grid. For the rectangular initial distribution, the unlimited scheme
clearly shows the typical over- and undershoots which are removed when using the
limited scheme. For the Gaussian bell case, no over- and undershoots are visible
also for the unlimited scheme (but undershoots exist, see table 4.2), and the limited
scheme underestimates the maximum slightly more than the unlimited scheme. On
the non-equidistant grid, the accuracy of the P, scheme is considerably reduced.
Figure 4.8 shows some results for the MUSCL and Superbee limiters. Also here, no
over- or undershoots appear. The Superbee limiter tends to increase smooth slopes,
whereas the MUSCL limiter shows some numerical diffusion. The overall accuracy
of the two schemes is however comparable, see tables 4.1 and 4.2. As expected, the
performance of the schemes is reduced for non-equidistant grid-spacing.

It should be mentioned that the Po-PDM scheme belongs to the class of so-called
total variation diminishing (TVD) schemes with the total variation TV being defined
as:

N
TV(U") = Wi+ 1" — ¥, (4.65)
=1

The TVD property is thus defined as

TV (N < TV (™). (4.66)
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In tables 4.1 and 4.2, some statistics of the unlimited and the limited scheme are
shown for the three different spatial resolutions given above. The order of approxi-
mation of the schemes, O have been estimated empirically by the relation:

O(Ag) log, (%) (4.67)

with the Lo error defined as

L, = i ((iAz, T) — 07T)? (4.68)

i=1

with W7 representing the numerical solution at ¢ = 7. It can be seen that the
unlimited and limited Py schemes are about third-order accurate for the Gaussian
bell case and of lower than first order fort the rectangular case. The latter can be
explained by the fact that the numerical scheme is not in the convergence range due
to the fact that the analytical solution is not continuous.

It is interesting to note that the Superbee scheme which tend to over-emphasise
smooth gradients is close to first order only for the Gaussian bell test case (see table
4.2) whereas the MUSCL limiter is (as expected) close to second order.
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Figure 4.7: One-dimensional advection scheme test showing the analytical solu-
tion (dashed line) and the numerical approximation (bold line) after 6 revolutions
through a periodic domain of length L = 100 m with Az = 1 m and an advec-
tion speed of u ms™!. The Courant number was ¢ = 0.5 for the equidistant grid-
spacing and the maximum Courant number was ¢ = 0.88 for the non-equidistant
grid-spacing. Upper panels: rectangular initial distribution; lower panels: Gaussian
initial distribution. The two left panels show results obtained with the unlimited Po
scheme, the left two panels show results for the Po-PDM scheme.
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Figure 4.8: One-dimensional advection scheme test showing the analytical solu-
tion (dashed line) and the numerical approximation (bold line) after 6 revolutions
through a periodic domain of length L = 100 m with Az = 1 m and an advec-
tion speed of u ms™!. The Courant number was ¢ = 0.5 for the equidistant grid-
spacing and the maximum Courant number was ¢ = 0.88 for the non-equidistant
grid-spacing. Upper panels: rectangular initial distribution; lower panels: Gaussian
initial distribution. The two left panels show results obtained with the MUSCL
limiter, the left two panels with the Superbee limiter.
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| Scheme | N |[Min |Max | TV/TVy | Lyerror | O |
Py, eq. 100 | 0.945 | 2.071 | 1.185 0.1207 |-
Pj, eq. 200 | 0.948 | 2.052 | 1.230 0.0926 0.382
Ps, eq. 400 | 0.948 | 2.052 | 1.234 0.0715 0.373
P, non-eq. 100 | 0.944 | 2.082 | 1.197 0.1654 -
P5, non-eq. 200 | 0.943 | 2.056 | 1.175 0.1313 0.333
P,, non-eq. 400 | 0.943 | 2.057 | 1.231 0.1004 | 0.387

MUSCL, non-eq. | 100 | 1.000 | 1.930 | 0.930 0.1750 | -
MUSCL, non-eq. | 200 | 1.000 | 2.000 | 1.000 0.1355 | 0.369
MUSCL, non-eq. | 400 | 1.000 | 2.000 | 1.000 0.1060 | 0.354

MUSCL, eq. 100 | 1.000 | 2.000 | 1.000 0.1163 |-
MUSCL, eq. 200 | 1.000 | 2.000 | 1.000 0.0898 | 0.366
MUSCL, eq. 400 | 1.000 | 2.000 | 1.000 0.0693 | 0.374
Superbee, eq. 100 | 1.000 | 2.000 | 1.000 0.0706 | -
Superbee, eq. 200 | 1.000 | 2.000 | 1.000 0.0499 | 0.500
Superbee, eq. 400 | 1.000 | 2.000 | 1.000 0.0353 | 0.499

Superbee, non-eq. | 100 | 1.000 | 1.995 | 0.995 0.1155 -
Superbee, non-eq. | 200 | 1.000 | 2.000 | 1.000 0.0836 | 0.466
Superbee, non-eq. | 400 | 1.000 | 2.000 | 1.000 0.0600 0.479

P,-PDM 100 | 1.000 | 2.000 | 1.000 0.1157 | -
P,-PDM 200 | 1.000 | 2.000 | 1.000 0.0894 | 0.372
P,-PDM 400 | 1.000 | 2.000 | 1.000 0.0697 | 0.359

Table 4.1: Absolute minima (Min) and maxima (Max), total variation of final profile
normalised by initial total variation (TV/TVy), Ly error and empirically estimated
order of approximation for the unlimited P; scheme, the MUSCL and Superbee
limiters and the limited P,-PDM scheme for the one-dimensional rectangle test
case.
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| Scheme N [Min |Max |[TV/TVg|Lyerror [O |
Py, eq. 100 | 0.9995 | 1.9692 | 0.9727 0.008998 | -
Py, eq. 200 | 1.0000 | 1.9933 | 0.9959 0.001252 | 2.845
Pj, eq. 400 | 1.0000 | 1.9993 | 0.9997 0.000159 | 2.977
P,, non-eq. 100 | 0.9862 | 1.8958 | 0.9234 0.050936 | —
P,, non-eq. 200 | 1.0000 | 1.9797 | 0.9800 0.009489 | 2.424
P,, non-eq. 400 | 1.0000 | 1.9972 | 0.9972 0.001294 | 2.874
MUSCL, eq. 100 | 1.0000 | 1.9176 | 0.9199 0.017673 | -
MUSCL, eq. 200 | 1.0000 | 1.9741 | 0.9747 0.003821 | 2.210
MUSCL, eq. 400 | 1.0000 | 1.9918 | 0.9920 0.000918 | 1.963
MUSCL, non-eq. | 100 | 1.0000 | 1.8020 | 0.8018 0.087883 | —
MUSCL, non-eq. | 200 | 1.0000 | 1.9274 | 0.9274 0.029930 | 1.554
MUSCL, non-eq. | 400 | 1.0000 | 1.9758 | 0.9758 0.009787 | 1.613
Superbee, eq. 100 | 1.0000 | 1.9544 | 0.9568 0.025891 | —
Superbee, eq. 200 | 1.0000 | 1.9919 | 0.9925 0.013184 | 0.974
Superbee, eq. 400 | 1.0000 | 1.9987 | 0.9988 0.005833 | 1.176
Superbee, non-eq. | 100 | 1.0000 | 1.8991 | 0.8992 0.069613 | —
Superbee, non-eq. | 200 | 1.0000 | 1.9706 | 0.9707 0.026591 | 0.974
Superbee, non-eq. | 400 | 1.0000 | 1.9960 | 0.9960 0.013753 | 1.176
P,-PDM 100 | 1.0000 | 1.9585 | 0.9609 0.010188 | —
P,-PDM 200 | 1.0000 | 1.9917 | 0.9923 0.001425 | 2.838
P,-PDM 400 | 1.0000 | 1.9982 | 0.9984 0.000198 | 2.850

Table 4.2: Absolute minima (Min) and maxima (Max), total variation of final profile
normalised by initial total variation (TV/TVy), Ly error and empirically estimated

61

order of approximation for the unlimited P; scheme, the MUSCL and Superbee
limiters and the limited Po,-PDM scheme for the one-dimensional Gaussian bell test

case.
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4.7.5.2 Two-dimensional solid-body rotation

Here it is shown, how the above described unlimited and limited P, schemes and
the MUSCL and Superbee schemes can be used for numerically solving a two-
dimensional problem:

0,0 + 9, (wl) + 3, (vT) = 0 (4.69)

For constant and non-divergent flow, a simple split scheme is applied alternately in
the z- and in the y-direction:

nt1/2 _ an AL n
Uiy =i — A—x( i+1/2,5 Flz'—1/2,j)a (4.70)
nil _ aqntle At n
\Ilz;Ll =V - A—y(Fi,j+1/2 - Fji,j—l/2) (4.71)
The fluxes F}' /2,i and F /2 have been calculated according to the schemes de-

scribed in section 4.7.5.1. It has been assumed here that the flow is non-divergent
in each direction (for the more general, divergent case, see section 4.7.5.3),

Uij— Ui-1,5 =0,  Vij — Vi1 =0, (4.72)

Following Pietrzak [1998], the test case investigated here is a solid-body rotation on
a square domain of size L, = L, = 100 m given by th velocity field

u=—-w(y—1), v=w(®—mr) (4.73)

with (zg,%) = (50 m,50 m) and the angular velocity w = 0.1 s~!. With temporal
and spatial resolutions of At = 0.1 s, 0.05 s and 0.025 s and Ax = Ay = 1 m,
0.5 m and 0.25 m, respectively, the maximum Courant number is about ¢ = 0.7.
The two initial fields, a cube and a Gaussian bell are shown in figure 4.9. One full
revolution is finished after £ = 7" = 207 s. The numerical results for Az = Ay =1m
are graphically displayed in figures 4.10 and 4.11 for the unlimited and the limited
Py scheme. Some statistics are given in tables 4.3 and 4.4. In comparison to the
one-dimensional case, some striking differences occur: The limited schemes are not
any longer TVD, although still monotone. The loss of the TVD property has been
formulated by Goodman and LeVeque [1985] as a theorem:
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Figure 4.9: Initial conditions for solid-body rotation test. Left: cube; right: Gaus-
sian bell.

Except in certain trivial cases, any method that is TVD in two space
dimensions is at most first order accurate.

This has the implication, that higher order schemes cannot be TVD. The order of
the schemes is again empirically assessed for this two-dimensional case, see tables 4.3
and 4.4. For the continuous Gaussian bell case, the empirical order is about 2 when
stepping from Az =1 m to Az = 0.5 m which could be explained by the splitting
applied. It is however obscure, why the accuracy decreases rapidly to below 1 when
stepping from Az = 0.5 m to Az = 0.25 m. This has to be further investigated.

A pseudo-two-dimensional scheme is obtained, when the calculation of the fluxes
Fij_12 and F; j;1)2 in the discrete advection equation (4.71) would not be based
on the intermediate concentrations \IIZ]-H/ ? but on the old concentrations Ul The
consequences of such a method for the P,-PDM scheme are shown in figure 4.14.
The visible distortions are due to the missing cross-diagonal terms and can only
be avoided by using fully two-dimensional schemes such as the UTOPIA scheme
discussed in section 4.7.5.3.

4.7.5.3 Two-dimensional linear distortion

In contrast to section 4.7.5.1, here the divergence is non-zero in each individual
dimension. This has the consequence that an intermediate amplification factor is
needed which is generally not unity. Thus a continuity equation is calculated in
parallel to the advection equation. This amplification factor which can be regarded
as a height or depth will be denoted by D and is multiplied on the concentration in
order to achieve full concentration conservation:
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PN W A G
PN W A a

Figure 4.10: Cube resulting after one solid-body rotation with Ax = Ay =1 m and
a Courant number of ¢ = 0.5. Left: unlimited P, scheme; right: limited Po-PDM
scheme.

0(D¥) + 0,(uDV¥) + 0y (vD¥) =0 (4.74)

0D + 0z (uD) + 0y(vD) =0 (4.75)

For the set of equations consisting of (4.74) and (4.75), four numerical schemes are
suggested:

1.: The split scheme according to Pietrzak [1998]:

At
n+1/2 n+1/2 n n mn I3 n n
DI = Dy — (Do i F sy — Dita o Fllagay) (4.76)

At
n n nt1/2gn+1/2 _ n n n
with
D; i, Dz‘,j - A—m( i+1/25 Ui—1/2,j) (4.78)
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Figure 4.11: Gaussian bell resulting after one solid-body rotation with Ax = Ay =1
m and a Courant number of ¢ = 0.5. Left: unlimited Py scheme; right: limited Ps-
PDM scheme.

and thus
nil _ pnile A n
Dt =D - A—y(v;,j+1/2 — Vi 1) (4.79)
with
21—1/2,]’ = D?+1/2,j“?+1/2,j (4.80)
and
Vigsie = DijiaVijie (4.81)

Here, DZ;FI/ ? denotes intermediate amplification factors or depths. With this method
1., it could be strongly deviating from the old and new depth (and for certain cases
even be negative or zero). This feature of this method could possibly spoil some
good properties of the underlying one-dimensional advection scheme. Thus an alter-
native method is suggested here, which we call the "Modified Campin correction”,
because it is motivated by an idea of Jean-Michel Campin (Massachusetts Institute
of Technology).

2.: "Modified Campin correction”, a directional split scheme:
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Figure 4.12: Cube resulting after one solid-body rotation with Az = Ay =1 m and
a Courant number of ¢ = 0.5. Left: MUSCL-limiter; right: Superbee limiter.

Figure 4.13: Gaussian bell resulting after one solid-body rotation with Ax = Ay =1
m and a Courant number of ¢ = 0.5. Left: MUSCL-limiter; right: Superbee limiter.

At
+1/2 +1/2
Dy PO = DIy — S (Dl Fli oy = DiayagFagey)

1 At At
55 (A—x (U125 — Uitayag) — Ay (V2 — Vz’f}—m))

(4.82)
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Figure 4.14: Pseudo-two-dimensional Po-PDM scheme: Cube (left) and Gaussian
bell (right) resulting after one solid-body rotation with Az = Ay = 1 m and a
Courant number of ¢ = 0.5.

‘ Scheme ‘ N ‘ Min ‘ Max ‘ TV/TV, ‘ TVmax/TVo ‘ L, error ‘ O ‘

P, 100 | 0.395 | 5.871 | 1.2771 1.6331 0.240092 | —
P, 200 | 0.389 | 5.868 | 1.2665 1.6785 0.186427 | 0.365
P, 400 | 0.386 | 5.867 | 1.2578 1.7074 0.144827 | 0.364
MUSCL | 100 | 1.000 | 5.000 | 1.0315 1.3003 0.246704 | —
MUSCL | 200 | 1.000 | 5.000 | 1.0251 1.3456 0.190325 | 0.374
MUSCL | 400 | 1.000 | 5.000 | 1.0172 1.3731 0.147447 | 0.368
Superbee | 100 | 1.000 | 5.000 | 1.0538 1.3093 0.182077 | —
Superbee | 200 | 1.000 | 5.000 | 1.0395 1.3528 0.129787 | 0.488
Superbee | 400 | 1.000 | 5.000 | 1.0276 1.3784 0.093277 | 0.477
P,-PDM | 100 | 1.000 | 5.000 | 1.0311 1.3117 0.236535 | —
P,-PDM | 200 | 1.000 | 5.000 | 1.0224 1.3536 0.182141 | 0.377
P,-PDM | 400 | 1.000 | 5.000 | 1.0148 1.3783 0.140810 | 0.371

Table 4.3: Absolute minima (Min) and maxima (Max), total variation of final profile
normalised by initial total variation (TV/TVy), Ly error and empirically estimated
order of approximation for the unlimited Py scheme, the MUSCL and Superbee
schemes and the Po-PDM scheme for the three-dimensional cube test case.
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‘ Scheme ‘ N ‘ Min f;, ‘ Max fip, ‘ TV/TV, ‘ TVmax/TVo ‘ L, error ‘ @) ‘

Py 100 | 0.9929 | 4.6206 | 0.97343 | 1.00582 0.020165 | —
P, 200 | 1.0000 | 4.9370 | 0.99529 | 1.00149 0.005408 | 1.899
P, 400 | 1.0000 | 4.9919 | 0.99960 | 1.00037 0.004535 | 0.254
MUSCL | 100 | 1.0000 | 4.1797 | 0.92944 | 1.00019 0.035405 | —
MUSCL | 200 | 1.0000 | 4.7206 | 0.98336 | 1.00005 0.007696 | 2.202
MUSCL | 400 | 1.0000 | 4.9074 | 0.99649 | 1.00001 0.003808 | 1.015
Superbee | 100 | 1.0000 | 4.5053 | 0.99336 | 1.00421 0.040727 | —
Superbee | 200 | 1.0000 | 4.8977 | 1.01584 | 1.01584 0.017234 | 1.241
Superbee | 400 | 1.0000 | 4.9806 | 1.00984 | 1.00984 0.007985 | 1.110
Po-PDM | 100 | 1.000 | 4.4755 | 0.95588 | 1.00044 0.023478 | —
P>-PDM | 200 | 1.000 | 4.8759 | 0.99214 | 1.00011 0.005782 | 2.022
P,-PDM | 400 | 1.000 | 4.9704 | 0.99878 | 1.00011 0.004556 | 0.344

Table 4.4: Absolute minima (Min) and maxima (Max), total variation of final profile
normalised by initial total variation (TV/TVy), Ly error and empirically estimated
order of approximation for the unlimited Py scheme, the MUSCL and Superbee
schemes and the P,-PDM scheme for the three-dimensional Gaussian bell test case.

n+1/2\I}n—!—1/2 _ ﬁ( n n

n+1ln+1l _ n n
D Wiy =Di; Yy Ay PisrpFigrye = Digoiplisyo)

1_. (At , n At o, n
—5¥i; (A—x (U5 = Uitajas) — Ay (Viljsas2 — i,j1/2))
(4.83)
with
nt1/2 _ L oonii e
D" =5 (D + D) (4.84)
Thus the intermediate layer height is the mean of the ”0ld” and the "new” ones.

The next scheme is a generalisation of the above mentioned ” Campin correction”
which has been originally designed for large-scale z-coordinate ocean models at small
Courant numbers (pers. comm. Eric Deleersnijder).

3.: "Generalised Campin correction”, a directional split scheme:
)
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DR g (D2 - D))

%) 2y

= Di, ¥y — A—$(Di+1/2,jFi+1/2,j - Dz‘—l/z,sz‘—l/z,j) (4.85)

At
+V3 Az (U125 — Ulliyay)

n+1,,n+1 n n+1 n—|—1/2
Di,j \I!iaj _\I]'i,j(Diaj _D )

1,J

Zj ?

n—|—1/2 nt1/2 At n n n
=Di; Y ay PiareFigine = Dijoreigoae) (4.86)

+ \Ifi,,-A—y (V12 = Vij-1y2)

Here, D"+1/ ?is in principle an arbitrary height, but for properly accounting for the
case D"Jrl D}; we choose here again (4.84).

Flnally, a fully two dimensional scheme is used which does not need the computation
of intermediate layer thicknesses.

4.: Fully two-dimensional scheme:

n+1.y,n+1 _ n n
D v = Di; Vi

At n n n n
_A—x( ir1/2iFiv 2 = Ditaga i i) (4.87)

At n n n mn
_A—y(Dz',j+1/2Fz',j+1/2 - Dz‘,j—l/ze',j—l/Q)

with the according two-dimensional continuity equation

Dyt = Difj = 3 (U = Ultapag) = Ay Vidrie = Vigoipo) (4.88)

For the split schemes 1. - 3., the slope limited Py scheme (Po-PDM) will be used
(see Pietrzak [1998] and section 4.7.5.1), for the two-dimensional scheme 4., the two-
dimensional Py scheme (UTOPIA, uniformly third-order polynomial interpolation
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algorithm, which has been described and named by Leonard et al. [1995]) will be
applied together with the flux-correction by Zalezak [1979]. This computationally
heavy but accurate combination has already been successfully applied by Burchard
and Petersen [1997] for a two-dimensional xz model.

The test problem investigated here is based on the following velocity field:

u:U:{d(l—a\x—yD for |z —y| < 20 (4.89)

0 else.

with ¢ = 0.1 and d = 1 for ¢t < 12.5 s and d = —1 for ¢t > 12.5 s. (4.89) can be
regarded as a current in a straight channel in a south-west to north-east direction
with a linear velocity variation across the channel. In the centre of the channel,
the velocity is flowing north-east with a current speed of 1 ms™!, and at the banks
the currents points south-west-wards with with a current speed of 1 ms™!. After
12.5 s, the current is reversing such that after a runtime of 25 s all fluid particles
return to their initial position. The width of the channel is V800 ~ 28.28. Tt can
easily be seen that the velocity field given by (4.89) is divergence-free, but the single
one-dimensional contributions are not:

Oyu = —0yv # 0. (4.90)

Specifically at the edges of the channel, the flow is strongly divergent in each direc-
tion.

In the centre of the channel, a cube with a side length of 20 m is located. The initial
condition for ¥ is thus:

\Ij_{ 5 for 40 < z,y <60

1 else, (4.91)

see figure 4.15.

Numerical experiments are run here for spatial resolutions of Az = Ay = 1 m and
time steps of At = 0.1 s and At = 0.8 s resulting in (one-dimensional) Courant
numbers of ¢ = 0.1 and ¢ = 0.8, respectively.

The distortion of the cube after 12.5 s is shown for the FCT scheme 4 in figure
4.16. Figures 4.17 and 4.18 show the numerical results for all 4 schemes after 25 s
for Courant numbers of ¢ = 0.1 and ¢ = 0.8, respectively. The scheme 3 performs
significantly worse than the other schemes. The two other split schemes perform
only slightly worse than the FCT scheme 4, which proves for ¢ = 0.1 to the be only
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PN W A O

Figure 4.15: Initial condition for the linear distortion test.

| Scheme | Courant no. | Ming;, | Maxgi, | TV/TV, | Ly error |

1 0.1 0.99999 | 5.00046 | 1.1069 0.20941
2 0.1 0.99998 | 5.00046 | 1.1070 0.20941
3 0.1 0.91385 | 5.25745 | 1.2010 0.27860
4 0.1 1.00000 | 5.00000 | 1.1039 0.20584
1 0.8 0.98917 | 5.01530 | 1.2686 0.29063
2 0.8 0.98226 | 5.03604 | 1.2810 0.29097
3 0.8 - - - -

4 0.8 0.86887 | 5.06703 | 1.2061 0.25468

Table 4.5: Final minima (Min) and maxima (Max), total variation of final profile
normalised by initial total variation (TV/TV,), and Ly error for the schemes 1. - 4.
for the linear distortion test. Two Courant numbers were used, ¢ = 0.1 and ¢ = 0.8.

exactly monotone (with machine accuracy) scheme tested here. For ¢ = 0.8, the FCT
scheme performs worse than the two split schemes 1 and 2, probably due to a more
strict stability constraint, although Leonard et al. [1995] state that the unlimited
UTOPIA scheme should require the same stability constraints that one-dimensional
versions.

4.7.5.4 Conclusion for tracer advection schemes

One-dimensional advection schemes applied alternately as directional split methods
for multi-dimensional problems seem to be a good compromise between accuracy
and computational effort. This has already been stated by several authors, see e.g.
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Figure 4.16: Concentrations for the linear distortion test with a Courant number of
c = 0.1 after half of the runtime (12.5 s) for the fully two-dimensional scheme 4.
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Figure 4.17: Final concentrations for the linear distortion test with a Courant num-
ber of ¢ = 0.1. Upper left: Scheme 1; upper right: scheme 2; lower left: scheme 3;
lower right: scheme 4.
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Figure 4.18: Final concentrations for the linear distortion test with a Courant num-
ber of ¢ = 0.8. Upper left: Scheme 1; upper right: scheme 2; lower left: scheme 3;
lower right: scheme 4.

LeVeque [1992] and Pietrzak [1998]. They are much easier to implement into three-
dimensional ocean models, and they are also faster than multidimensional schemes.
The loss of accuracy compared to the computational expensive FCT scheme dis-
cussed in section 4.7.5.3 is relatively small. The calculation of intermediate layer
thicknesses is essential for the conservation of these split schemes. One potential
problem of the conventional split scheme discussed by Pietrzak [1998] could be the
occurance of zero or negative intermediate layer thicknesses for wadden sea appli-
cations. The performance of the split scheme 2 suggested in section 4.7.5.3 which
avoids this problem needs to be further assessed in real fluid dynamics applications.
It seems that the application of Strang [1968] splitting slightly increases the accu-
racy of the advection schemes in fluid dynamics applications, see the lock exchange
test case in section 5.2.
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4.8 Internal pressure gradient
The internal part of the pressure gradient is discretised according to Mellor et al.

[1994]. The crucial part of this term, which is (0%b), (in the case of the u-equation),
is discretised between two vertically adjacent velocity points (i.e. on X-points):

1 *
E(hi,j,k + Rijr1) (M aXb)i,ch

1 1
3 (Bis 1 k1 + biv1gk) — 5(0igkr1 + bijk)
U
A:rm-

(héjk + Mitjpe)

Q

N | —

(4.92)

1 1
— (0u2); j <§(bi+1,j,k+1 +bijki1) — §(bi+1,j,k + bi,j,k))

The discretisation (4.92) can be rewritten as:

(3 — @)bivigest + (5 + )biviin — (5 + a)bigess — (5 — w)big
Az

(4.93)

with o = OpzAx?;/(hijk + hivik). For [af < 4, (4.93) can be interpreted as

interpolating vertically between b; 11 j x+1 and b;1; j» on one hand and between b, ; x11

and b;j on the other hand. For |a,| > %, extrapolations are made instead. The

requirement |op| < % is commonly called "hydrostatic consistency condition’ and can
be rewritten as:

Ax
%5 <L 1.94
e %(hi,j,k + Rig1,5k) (4.94)

Condition (4.94) is easily violated when the bathymetry is steep and the vertical
discretisation fine. The numerical problems arising in o-coordinate models due to
the discretisation of the internal pressure gradient have been discussed by numerous
authors, see e.g. Kliem and Pietrzak [1999] for an overview. Many numerical schemes
have been suggested for circumventing this problem (see e.g. Stelling and van Kester
[1994] for a non-linear scheme, McCalpin [1994] for a fourth-order scheme and Chu
and Fan [1997] for a sixth-order scheme). Some of these might be integrated into
GETM later, in case the second-order scheme fails. It should however be noted that
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higher order schemes are not a general remedy for the pressure gradient error, see
Kliem and Pietrzak [1999].

One alternative, energy-conserving second-order method has been suggested by Song
[1998]:

1 *
E(hi’j7k + hijkt1) (M axb)i,j,k

it F i1 k) (B r + B ) — 30y + bigr) (B iy + 0S5 )

- Az
1 u 1 u
=\ 5 Girrgmrs + bigaen) Oozn)ijpen = 5 Oirrin + bige) (Oo2k)i i
(4.95)

4.9 Coriolis and grid-related rotation

The Coriolis terms in the momentum equations (3.27) and (3.28) are discretised
together with the rotational terms due to the curvilinear grid. For doing so, various
interpolations of velocities have to be carried out because of the staggering of the
Arakawa C-grid. One straight-forward method for the discretisation of these terms
is given here.

After multiplication with mn, rotational terms in (3.27) can be discretised as follows:

(CIk {f + mn vy Ox (%) — mn u0Oy (%) }) o
i

¢ _ c. + +
qu U + ,Uu Ayl+17.] Ayl,] — Ui 5 k AxZaJ szajfl
ik | Jig i,k u u 0], u u
~ ’ PR A Ayl Ay Ayy

(4.96)

. 1 1
with v, = 7(Vijk + Vig-1k + Vit1ik + Vier-1k) and ¢ p = 1(Gijk + Gig-1k +
Qit1jk + Qit1,j-1,k)-

The same can be done in equation (3.28):

(pk {f + mn vy (%) — mn ugOy (%) }) ~
%,J

+ _ + c o _ ¢

o vy ik Ay —AYitag o AT — AT
iij7k 1.7 v v iijik v v
Ami,jAyi,j Axi,jAyi,j

(4.97)




76 CHAPTER 4. DISCRETISATION

with wj, . = i(ui,j,k + Ui 41k + i1k + Uim1,41,4) and Dijk = %(pi,j,k + Dij+1,k +
Pi—1jk + Pi—1,4+1,k)- Here fi' is the Coriolis frequency at the U-points and f7; the
Coriolis frequency at the V-points.

Alternative formulations for spatial averaging have recently been suggested by FEs-

pelid et al. [2000] for the Coriolis rotation in order to guarantee energy conservation:

27 k) .

and

G =

v 4 \/h;],]yk; \/h;]a]_ lak \/h;}+17],k \/h;}+17]_1yk

The effect of these alternative spatial averaging procedures in combination with
curvi-linear coordinates has so far not been investigated.

In order to minimise the violation of kinetic energy conservation due to Coriolis
rotation, the horizontal momentum equations are calculated in alternating sequence
such as:

Vhik ( Gi jik

+ i j—1,k i Gi+1,5,k + (Ii+1,j—1,k) (4.99)

v v v uvuvVv Vv UU

(see Beckers and Deleersnijder [1993]). In each of these calculations, the most recent
result from the preceding equation is used for the evaluation of the Coriolis term.
This procedure is used for the vertically integrated mode (2.16) and (2.17) and for
the three-dimensional momentum equations (3.15) and (3.16).

4.10 Drying and flooding

The main requirement for drying and flooding is that the vertically integrated fluxes
U and V are controlled such that at no point a negative water depth occurs. It is
clear that parts of the physics which play an important role in very shallow water of a
few centimetres depth like non-hydrostatic effects are not included in the equations.
However, the model is designed in a way that the control of U and V in very shallow
water is mainly motivated by the physics included in the equations rather than
by defining complex drying and flooding algorithms. It is assumed that the major
process in this situation is a balance between pressure gradient and bottom friction.
Therefore, in the case of very shallow water, all other terms are multiplied with the
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Figure 4.19: Sketch explaining the principle of pressure gradient minimisation during
drying and flooding over sloping bathymetry.

non-dimensional factor a which approaches zero when a minimum water depth is
reached.

By using formulation (2.26) for calculating the bottom drag coefficient R, it is
guaranteed that R is exponentially growing if the water depth approaches very
small values. This slows the flow down when the water depth in a velocity point is
sinking and also allows for flooding without further manipulation.

In this context, one important question is how to calculated the depth in the velocity
points, H* and H", since this determines how shallow the water in the velocity points
may become on sloping beaches. In ocean models, usually, the depth in the velocity
points is calculated as the mean of depths in adjacent elevation points (T-points):

1 1
Hiy =5 (Hij+ Hivg),  Hiy =g (Hig+ Hige). (4.100)

%]
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Other models which deal with drying and flooding such as the models of Duwe
[1988] and Casulli and Cattani [1994] use the minimum of the adjacent depths in
the T-points:

H!.

i, = min{Hi,j, Hi+1,j}, H:] = min{Hi,j, Hi,j+1}- (4101)
This guarantees that all depths in the velocity points around a T-point are not
deeper than the depth in the T-point. Thus, when the T-point depth is approaching
the minimum depth, then all depths in the velocity points are also small and the
friction coefficient correspondingly large.

Each of the methods has however drawbacks: When the mean is taken as in (4.100),
the risk of negative water depths is relatively big, and thus higher values of D,;, have
to be chosen. When the minimum is taken, large mud-flats might need unrealistically
long times for drying since all the water volume has to flow through relatively shallow
velocity boxes. Also, velocities in these shallow boxes tend to be relatively high in
order to provide sufficient transports. This might lead to numerical instabilities.
Therefore, GETM has both options, (4.100) and (4.101) and the addition of various
other options such as depth depending weighting of the averaging can easily be
added.

If a pressure point is dry (i.e. its bathymetry value is higher than a neighbouring
sea surface elevation), the pressure gradient would be unnaturally high with the
consequence of unwanted flow acceleration. Therefore this pressure gradient will
be manipulated such that (only for the pressure gradient calculation) a virtual sea
surface elevation ( is assumed (see figure 4.19). In the situation shown in figure 4.19,
the left pressure point is dry, and the sea surface elevation there is for numerical
reasons even slightly below the critical value —H; ;j + Hp,. In order not to let more
water flow out of the left cell, the pressure gradient between the two boxes shown
is calculated with a manipulated sea surface elevation on the right, CNHLJ-.

4.11 Coupling with turbulence model

The turbulence model GOTM (see section 2.3) is located in the T-points. Therefore,
the turbulence production terms need to be interpolated to these locations.
For the shear production P from (2.40) the shear squared

5?2 = (0,u)” + (8,v) (4.102)

is calculated in a straight-forward way as follows:
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2 2
(S2)i 15 ~ 1 Wijk+1 — Uik 4 [ Mgkt T Uik
%75 ~ 1 u u 1 u u
2 3B eer T hes ) sPE e T hE k)

2 2
+ Uz’]ak+1 B Ui:j,k _I_ U’i,j—l,k+1 — Ui:j_lak
1/pwv v lipv v
E(hi,j,kﬂ + hi,j,k) §(hz‘,j—1,k+1 + hi,j—l,k)

A method which should better conserve energy for strongly varying layer thicknesses
(see Burchard [2001d]) would be the following:

9 1 %(Vi,j,k + Viv1,jk) (Wi o1 — ui,j,k)2
(5%)iin = 5

3 (B T hE )

%(Vifl,j,k + Vi k) (Wis1jet1 — uifl,j,k)Q

%(hu—l,j,k—kl + hzu—l,j,k)

3 Wik + Vi) (Wighrr — Vigik)” (4.104)
s (W + 1Y)

5 Wik + Vigp) (Vij—1k41 — Vij—1,k)>
%(h;),j—l,k-i—l + h;),j—l,k)

1 -1
‘ ( 9 (i + B je) Vz',j,k)

The higher numerical stability of (4.104) compared to (4.103) needs to be shown
however for some special test scenarios.

For the buoyancy production B from (2.40) the Brunt-Viiséld frequency squared,
N? = 9,b with buoyancy b from (2.4), has to be calculated:
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o Dijk+1 = bijk
1/t t
§(hi,j,k+1 + hi,j,k)

bit1jk+1 — bit1,jk bi—1jk+1 — bi—1jk
+5 +

4.105
§(h§+1,j,k+1 + h§+1,j,k) %(h’f—l,j,kﬂ + h'z;—l,j,k) ( )

n bij+1k+1 — bijrik n bij—1+1 — bijj—1k
1 t t 1 t t
2 (hi,j+1,k+1 + hi,j+1,k) 2 (h’i,jfl,k—}—l + hi,jfl,k)

For the case that one or more T-points involved in the calculation of (4.105) are
land points, the weighting needs to be corrected in such a way, that the weight of
the central T-point (7, j) is twice the weight of each surrounding T-point.

In contrast to the weighted average given by (4.105), the straight-forward discreti-
sation of N? is given by

bijk+1— bijk

(R e i)

(N?);jn = (4.106)
In some cases, this did not produce stable numerical results. The reason for this
might be that the velocities involved in the calculation for the shear squared do
depend on the buoyancies in the two neighbouring T-points such that the straight-
forward method (4.106) leads to an inconsistency. However, other experiments with
the energy-conserving discretisation of the shear stress squared, (4.104) and the
straight-forward discretisation of N2 (4.106), produced numerically stable results.
Thus, the proper discretisation of the shear and buoyancy production terms surely
needs further attention in the future.



Chapter 5

Idealised tests

5.1 Simple channel flow

5.1.1 Grid distortion

In this section a rectangular channel with a constant depth of H = 2 m, a length of
L, = 1500 m and a width of L, = 300 m is discretised with a distorted grid in order
to assess the discretisation error due to the curvilinear coordinates. The two grids
with different resolution which are tested here are based on the following functions:

2y
Yij =Y+ L—;yi,j(Ly — Yij) exp (=b(xi; — m0)?)
)

%, (1 1
Ti; = xi ~ Tz <§Lyyf’j — gyf’]) (—2b(z;; — x0)) exp (—b(:r,-,j — xO)Q) ,
y
(5.1)

with y, = 100 m, b = 1.6 - 107 m™2 and zp = $L,. For the coarse resolution,
Azl = Ayé- = 150 m and for the fine resolution, Azl = Ayé- = 50 m have been used
(see figure 5.1). The grid is calculated by prescribing the values of z! and y; and
calculating z; ; and y; ; by non-linear iteration over (5.1).

It can easily be seen by converting (5.1) into a continuous function (z;; — =z,
yi; — y) that 0,y = —0yz, which is equivalent to the orthogonality of the grid.
The vertically integrated flow is forced by an external pressure gradient imposed
by an elevation difference at the open boundaries with ((z = 0) = —0.05 m and
((x = L;) = —0.05 m. Since no variations in the z-direction are imposed, the
resulting flow should be strictly eastwards with the northward velocity component

81
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v = 0. This will be checked for the two resolutions along a cross-section at z = %Lw
where the transformed coordinate is exactly directed along the physical coordinate,
such that no re-transformations are needed.

The results are shown in figure 5.2. It can be seen that the velocity varies by about
2 % for both resolutions around a value of © = 0.62 ms~!. The northward velocity
which should be zero, has a maximum value of v = 0.008 ms ! for the fine resolution
and the surface elevation deviates by less than 0.001 m from its mean value. These
results state that the curvilinear grid as it is used here and discretised in the model
leads to a discretisation error which is relatively small for this case. However, this
matter should be investigated further with the aim to minimise this grid related
error. Probably, the use of higher order advection schemes for momentum will
improve the performance of the model for curvilinear coordinates.

TTITT TT
T T
T TTTTTTTTITTT

Figure 5.1: Distorted grid test: above: low resolution; below: high resolution.

5.1.2 Bended channel

Here, vertically integrated, steady-state flow in a bended channel is simulated with
Cartesian and curvilinear grids. The channel with homogeneous depth (H = 2 m)
consists of a semi-circle with two straight parts at each end, see figures 5.3 and
5.4. The inner radius of the bended part is 1500 m, the outer radius 2250 m. The
uniform width of the channel is 750 m, the lengths of the straight parts at the end is
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Figure 5.2: Distorted grid test: Northward velocity component (left), eastward
velocity component (middle) and surface elevation (right) along a cross-section at
r = %Lw. O: low resolution solution; ®: high resolution curvilinear.

2250 m each. For the Cartesian grids the resolutions are Az = Ay = 150 m (coarse)
and Az = Ay = 30 m (fine). The resolutions for the curvilinear grid in the straight
parts of the channel are Az = Ay = 150 m (coarse) and Az = Ay = 50 m (fine).
The flow is forced by an external pressure gradient imposed by different elevations
at the open boundaries, which is -0.05 m at the northern open boundary and 0.05
m at the southern open boundary. All test cases have been integrated for 4 hours
such that a steady-state given by a balance of advection, bed friction and pressure
gradient is approached. The results for v, v and ( are shown as cross-sections
at y = %Ly = 2250 m, see figure 5.5. Due to the larger along channel pressure
gradient, the northward velocity is larger at the inner channel edge than at the
outer edge. This is reproduced by all grids. However, the Cartesian grids produce a
lateral boundary layer due to numerical friction at the boundaries with zig-zagged
boundary approximation. This appears to be a major drawback of Cartesian grids in
such flow situations. The high resolution Cartesian grid however approximates the
curvilinear solutions well in the centre of the channel, whereas the coarse resolution
Cartesian solution significantly underestimates the other results. It should actually
be fairly easy to derive an approximate analytical solution for better comparison.
For the cross-channel velocity, the curvilinear solutions predict values close to zero,
in contrast to the two Cartesian solutions which predict some small cross-flow. It is
assumed that this cross-flow component is generated by the lateral boundary layer
due to the numerical friction. The predicted surface elevations do all reproduce the
effect of flow curvature (centrifugal force) such that the elevations are slightly higher
at the outer edge of the channel.
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Figure 5.3: Bended channel test: Cartesian

right: high resolution.
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coordinate grid; left: low resolution;
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Figure 5.4: Bended channel test: Curvilinear coordinate grid; left: low resolution;

right: high resolution.
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Figure 5.5: Bended channel test: Northward velocity component (left), eastward ve-
locity component (middle) and surface elevation (right) along a longitudinal cross-
section at y = %Ly. O: low resolution curvilinear solution; ®: high resolution
curvilinear solution; [1: low resolution Cartesian solution; B: high resolution Carte-
sian solution.

5.1.3 Constricted channel

A further test case is a constricted channel with a length of L, = 1500 m, a maximum
width of L, = 300 m at both end and a minimum width of 100 m in the middle.
Three Cartesian grids with Az = Ay = 50 m (coarse), Az = Ay = 10 m (fine)
and Az = Ay = 2.5 m (very fine) and two curvilinear grids with a grid-spacing
equivalent to the coarse and fine Cartesian grids will be tested (see figures 5.6 and
5.7). Similarly to section 5.1.1, the curvilinear grids are given by an analytical
expression as well:

Ye
Yig =Y+ %(yo — %) Dij

1,2
Y 3Yij — YeDij
Tij =T — y_zyi,j (yO - 21”_31—_%;]) (=2b(zi,; — 20))Di;

yo bd

1— %D,

Yo sJ

1.2
Yo — YeDi
+Ye (yo —20 = J) (=2b(zi; — o)) Diy,

D;; = exp (=b(zi; — 10)%)

such that z; ; = ! for Yi; = Yo Also here, the orthogonality can easily be proven.
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In (5.2), the following parameters have been used: y, = 100 m, zo = 1 L,, yo = 5Ly,
b=1.6-10"° m2.

The uniform depth of the channel is H = 2 m. The forcing will be again imposed by
a prescribed elevation difference ({(z = 0) = —0.05 m and {(z = L,) = —0.05 m).
The results for all five grids are shown in figures 5.8 and 5.9. Figure 5.8 shows u, v
and ¢ along a cross-section at x = %Lz. The curvilinear grids predict flow maxima
at the edges of the flow whereas the Cartesian solutions show the typical lateral
boundary layer due to numerical friction. Only the very fine Cartesian solution
predicts a local velocity minimum in the centre of the channel. The flow velocity for
the fine resolution curvilinear solution is significantly higher than the corresponding
low resolution solution. This is due to the fact, that the cross-section for the low
resolution curvilinear grid is slightly wider than the high-resolution grid, because
the values of Ay}, have been interpolated from the Ayf; values. All grids predict
some non-zero northward flow velocity. The curvilinear grids show a southward
component in the northern part and vice versa. The very high resolution Cartesian
grid partially confirms this, although the numerical boundary layer effect is clearly
visible. The surface elevation has a maximum in the centre of the flow for all grids
except the coarse resolution Cartesian grids (which has only two grid points across
the channel). The fine curvilinear grid predicts however a significantly lower surface
elevation than all other grids, probably due to the higher flow velocity.

Figure 5.9 shows along channel velocity and surface elevation for all five grids. Also
here, the effect of numerical friction is visible: the total flux through the channel
is significantly lower for the Cartesian grids. Also, the hydraulic jump at about
T = %Lx is more pronounced for the high-resolution Cartesian grid than for the
other grids due to the higher flow velocities in this test case.

The constricted channel in curvilinear coordinates has also been used for generating
the GETM logo shown on the front page of this report. The logo GETM has
been discretised by hand with 30 increments in the vertical and then been used
as initial condition for tracer concentration with ¢ = 20 being the concentration
for the acronym and ¢ = 10 being the background concentration. In order to fit
this initial condition to the left side of the constricted channel, it was extended
such that the length was now L, = 4100 m. The sea surface elevation difference
at the open boundaries was again 0.1 m. After the flow was in steady-state, the
tracer concentration was reinitialised and thus transported through the constriction.
For this, the curvilinear grid with fine resolution with 30 increments in south-north
direction was used. The result is shown in figure 5.10 in such a way that all grid
boxes with ¢ > 13 are drawn. As advection scheme, the Superbee limite