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Chapter 1

Introduction

Figure 1.1: Picture showing the western Baltic Sea with the Arkona Basin. An inflow of
a dense water plume from the North Sea is simulated for this region. By courtesy of Frank
Janssen (BSH)

1.1 Baltic Sea inflow events

The occurance of Baltic Sea (see Fig. 1.1) inflow events has been well investigated in
the work of Matthäus and Franck [1992]. It is shown that only major inflows, that
approximately occur every ten years, can significantly affect the marine environment
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1.1. BALTIC SEA INFLOW EVENTS

due to the property that such bottom currents transport high amounts of saline and
oxygenated water. Hence positive consequences of such inflow processes are for ex-
ample deeper layer ventilation and increased natural reproduction. On this account,
the supply with saline water has been part of different quantitative and qualitative
investigations (Kõuts and Omstedt [1993], Arneborg et al. [2005], Matthäus and Franck

[1992], Burchard et al. [2005], Lass and Mohrholz [2003]). The saline bottom current
as shown in Fig. 1.2 can be considered as a lateral bordered layer of well mixed, dense
water that is under the influence of Coriolis force, friction force and pressure gradient
force. These dense bottom currents, called plumes, are diluted by the ambient brackish
surface water with around 8 psu (practical salinity unit) (Liljebladh and Stigebrandt

[1996]; Burchard et al. [2005]) of the Baltic Sea.

Figure 1.2: Sketch showing the plume of saline water shortly before it reaches Kriegers Flak.
The yellow dots represent the main pathway through the Oeresund, crossing Drodgen Sill up
to Kriegers Flak. This simulation is a result of an idealized Arkona inflow event modeled with
the two layer model.

The water has to pass a set of narrow channels like the Stolpe Channel (1.3) and
shallow sills like the Drodgen Sill (1.1) before reaching the eastern parts of the Baltic
Sea. Fig 1.3 gives a very descriptive demonstration of the inflowing dense water with
a slice through the main passway of the plume passing the Arkona Basin with a depth
of around 50 m, the Bornholm Basin and finally reaching the Gotland Basin with
depth values of up to 250 m. As the dense water descends the sills and basins it
entrains ambient water. The vertical mixing process, called entrainment, is modifying
the properties of the dense water (e.g. salinity, velocity, plume thickness). As shown
in Fig. 1.3 this can be seen by decreasing salinity values with differences of around 4
psu between the Arkona Basin and the Bornholm Basin. It must be pointed out that
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Fig. 1.3 only represents a qualitative result of an idealized two layer model simulation
discussed in Sect. 4.2.3. Hence the net volumes and tracer properties of the water are
highly sensitive at any point to the amount of entrainment that has taken place. Higher
entrainment rates indicate faster mixing and thus a slower velocity of propagation of
the bottom current.
Kõuts and Omstedt [1993] have defined three main mixing zones: The first two are the
Sound (Oeresound; see Fig. 1.1) between Denmark and Sweden and the Belt Sea (Fig.
1.1) where the deep water inflow increases by 79%. In the second mixing zone, the
Arkona Basin, the volume transport has an increase of 53% while in the third mixing
zone, the Stolpe Channel (Fig. 1.3), the vertical mixing process (entrainment) adds
additional 28% to the volume transport.

Figure 1.3: Slice from south of Drodgen Sill trough the Arkona Basin up to the Gotland Basin.
Picture showing the result of an idealized simulation of the Arkona inflow event with the 2D
two layer model after 30days.

On the basis of this importance the QuantAS-Off project (Quantification of water mass
transformations in the Arkona Sea) has the task to investigate possible additional mix-
ing in the Arkona Sea due to Offshore wind farms. These are planned to be build on
Kriegers Shoal. The main question is how much these dense and oxygen-rich bottom
currents will be obstructed and diluted by offshore wind farms. The distribution of
the flux may change with consequences for the delivery of the Bornholm and Gotland
Basin with oxygen-rich water. Various idealized and realistic simulations (Janssen et al.

[2006]) with GETM (Burchard and Bolding [2002]) together with measurements in the
Arkona Sea (Burchard et al. [2005]) try to understand the natural mixing processes,
within the scope of the QuantAS-Nat (QuantAS - Natural processes) project. Not
until further insights about natural mixing processes will have been gained, additional

3



1.1. BALTIC SEA INFLOW EVENTS

Figure 1.4: Observed (hourly averaged) and simulated salinity at a position north of Kriegers
Flak during an inflow of medium-intensity dense water on Feb 7 at 4 am. Picture taken from
Burchard et al. [2005] under addition of the two layer model result.

mixing caused by Offshore wind farms will be quantitatively estimated.
As a part of scientific research about natural mixing processes this thesis wants both to
give additional information and to verify existing knowledge about water mass transfor-
mations during inflow events. Beside the development and testing of a hydrostatic and
Boussinesq approximated two layer model, this thesis tries to observe plume dynamics
and mixing processes during an idealized Baltic Sea inflow event. For modeling plume
dynamics the Baltic Sea is assumed as a two layer system and the plume as a gravity
current. A gravity current is defined as a primarily horizontal flow of a fluid within
another in a gravitational field that is driven only by density difference.
Measurements in the north of Kriegers Flak (Fig. 1.4) during a medium-intensity in-
flow situation justify the idealized assumption of a two layer system. It is demonstrated
that the saline bottom current can be considered as a well-defined current with nearly
homogeneous salinity values inside the plume, bordered by the interface with high gra-
dients for the salinity. Fig. 1.4 plots the observed salinity together with two layer
model simulated salinities obtained in Chapt. 5.

This thesis is structured as follows: In the first chapter the model equations of the
two layer model are derived and terms are explained. The second chapter shows the
numerical implementation and the discretisation of the model equations. The third
chapter deals with validation of the model equations while some analytical solutions
(e.g. internal waves) are compared with the two layer model results. Furthermore
some test cases like the lock exchange experiment are implemented. Idealized exper-
iments demonstrate basic properties of gravity currents and consequently are helpful
for further interpretations of more complex model results. The fifth chapter covers the
simulation of the idealized Baltic Sea inflow event and the comparison to observational
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data and simulations of the three-dimensional estuarine ocean model GETM (Burchard

and Bolding [2002]).
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Chapter 2

Theory

During the following sections the ocean is considered as a two layer system with two
active and boussinesq-approximated fluids both being hydrostatic and incompressible.
The dynamic equations for horizontal velocities are vertically but not horizontally in-
tegrated:

u1 =
1

h1

∫ η1

−H
udz,

u2 =
1

h2

∫ η2

η1

udz,

(2.1)

with u1, u2 being the mean velocities in upper and lower layer, u the horizontal velocity
component, h1, h2 the thickness of lower and upper layer and the depth H. The two
layer model has two active layers and uses the reduced gravity formulation. The model
domain is being implemented in Cartesian coordinates and variation of the Coriolis pa-
rameter is neglected. A drying and flooding algorithm is being implemented that easily
allows to split and merge the active lower layer (plume) due to topographic barriers.
Turbulent exchange between upper and lower layer is modeled with the entrainment
approach (Sect. 2.2.5), meaning that transport of mass and momentum from the upper
into the lower layer occurs because of turbulent mixing.
First of all, the model equations are derived for the 2D two layer case. Chapt. 2.4 points
out how the 2D model is expanded to 3D to reproduce plumes on complex bathymetry
(see Chapt. 5).

2.1 Notation

The notation used for differentiation is written in the following form:
Partial derivatives are given by ∂, e.g. ∂x with respect to the spatial coordinate x or
∂t with respect to time. Other notations are in common form or explained in the text
when applied.
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2.2. 2D TWO LAYER MODEL EQUATIONS

2.2 2D two layer model equations

In this chapter the general two layer model equations are derived. Under utilization
of the incompressibility condition (2.9), the hydrostatic approximation (2.21), the mo-
mentum equation without rotation (2.20) and the boundary conditions for surface and
bottom (2.11), (2.24) the vertically integrated model equations are formulated. The
derived equations for conservation of mass and momentum are summarized in Sect. 2.3.

ρ

η
2

η
2
 = const

z

x

surface

interface

bottom H = H(x)

h

h

(x,t)

(x,t)1

2

z = 0

 = ρ
11

ρ (x,t)

1 1

2 2
u =  u  (x,t)

u =  u  (x,t)

z =     (x,t)

z =     (x,t)
1

Figure 2.1: Schematic illustration of two-layer model

Let us denote the horizontal coordinate by x and the vertical coordinate by z. Let t
be the time and ̺1 the density of the lower layer and ̺2 the density of the upper layer.
The density of the upper layer ̺2 is constant and independent of time and space. The
density of the lower layer ̺1 is a function of the horizontal coordinate x and the time
t. This spatial dependency of ̺1 is needed to reproduce mixing in the plume with the
help of the entrainment formulation (2.62) and reproduce dynamics due to horizontal
density gradients:

Upper layer: ̺2 = const,
Lower layer: ̺1 = ̺1(x, t),
with: ̺2 < ̺1.

(2.2)

The relation ̺2 < ̺1 is guaranteed because of the conservative dilution (3.29) of lower
layer water with upper layer water.
Because of the variable bottom topography the depth H is a function of the horizontal
coordinate x:

H = H(x). (2.3)

The thickness of the lower layer h1 and the upper layer h2 are functions of the horizontal
coordinate x and the time t:

h1 = h1(x, t),
h2 = h2(x, t).

(2.4)
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2.2.1 DERIVATION OF DYNAMIC EQUATIONS FOR SURFACE AND

INTERFACE

The interface elevation η1 and the surface elevation η2 are the following:

η1 = η1(x, t),
η2 = η2(x, t),

(2.5)

with the following relation between η1, η2 and h1, h2:

h1(x, t) = η1(x, t) + H(x),
h2(x, t) = η1(x, t) − η2(x, t).

(2.6)

The variables of the two layer model are shown in Fig. 2.1. The velocities in upper and
lower layer:

u1 = u1(x, t),
u2 = u2(x, t),

(2.7)

are obtained by calculating vertically integrated transports U1 and U2 in upper and
lower layer in spatial x direction.:

u1h1 = U1(x, t) =

∫ η1

H
udz,

u2h2 = U2(x, t) =

∫ η2

η1

udz.

(2.8)

The solution of the two layer model equations allows to simulate a time-dependent,
horizontal two-dimensional bottom current. The bottom current is considered as dense
bottom water surrounded by an active upper layer with constant density.

2.2.1 Derivation of dynamic equations for surface and interface

The mathematical description of incompressibility is, with u being the horizontal ve-
locity component and w being the vertical velocity component:

∂xu + ∂zw = 0, (2.9)

which can be transformed by integration over the lower layer into:

∫ η1

−H
∂xudz + w(η1) − w(−H) = 0. (2.10)

The kinematic boundary conditions for the surface and the bottom result from the
requirement that the particles propagating close to the boundaries the boundaries are
not allowed to move through the boundaries, but along these boundaries:

Bottom: w(−H) = −u(−H)∂xH,
Interface: w(η2) = ∂tη2 + u(η2)∂xη2,
Surface: w(η1) = ∂tη1 + u(η1)∂xη1.

(2.11)
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2.2. 2D TWO LAYER MODEL EQUATIONS

We see in (2.11) that there will be no flow through the bottom. In the case of a flat
bottom with ∂xH = 0 there will be no vertical velocity w(−H) = 0 directly at the
bottom.

With equations (2.10) and (2.11) we can write the following:

∫ η1

−H
∂xudz + ∂tη1 + u(η1)∂xη1 + u(−H)∂xH = 0 (2.12)

After applying the Leibniz-Rule (Bronstein and Semendjajew [1984]), the partial deriva-
tive ∂x in the integral in equation (2.12) can be written outside the integral and the
following additional terms are obtained:

∂x

∫ η1(x,t)

−H(x)
udz − ∂xη1u(η1)

︸ ︷︷ ︸

(i)

− ∂xHu(−H)
︸ ︷︷ ︸

(j)

+∂tη1 + u(η1)∂xη1
︸ ︷︷ ︸

(ii)

+ u(−H)∂xH
︸ ︷︷ ︸

(jj)

= 0 (2.13)

We see that (i) and (ii) as well as (j) and (jj) in (2.13) cancel out each other:

−∂x

∫ η1

−H
udz = ∂tη1. (2.14)

To get the dynamic equations for the surface- and interface elevation we define for the
horizontal velocity component u1 in the lower layer:

u1 =
1

η1 + H

∫ η1

−H
udz =

1

h1

∫ η1

−H
udz, (2.15)

so that we obtain, with U1 being the vertically integrated transport in the lower layer:

h1u1 = U1 =

∫ η1

−H
udz, (2.16)

which we can use together with (2.14) to get the dynamic equation for the interface
elevation:

∂tη1 = −∂x(h1u1). (2.17)

The same procedure applied to the surface layer will lead us to the dynamic equation
for the surface elevation:

∂tη2 = ∂tη1 − ∂x(h2u2) = −∂x(h1u1) − ∂x(h2u2), (2.18)

with u2 being the horizontal vertically integrated velocity in the upper layer:

u2h2 = U2(x, t) =

∫ η2

η1

udz (2.19)

and U2 the vertically integrated transport in the upper layer.

10



2.2.2 DYNAMIC EQUATIONS FOR HORIZONTAL VELOCITIES

2.2.2 Dynamic equations for horizontal velocities

Derivation of equation of horizontal velocity u2 in upper layer

The momentum equation without rotation for an inviscid, incompressible and immis-
cible fluid in spatial x− and z−direction can be written as:

∂tu + ∂xu2 + ∂z(wu) + ∂zτ = −
1

̺0
∂xp, (2.20)

where ̺0 is the constant reference density, ∂xp the pressure gradient and τ the vertical
shear stress normalized by mean density.

Furthermore the hydrostatic approximation is used:

∂zp = −g̺, (2.21)

where p is the pressure, g the gravitational acceleration and ̺ the density.

Integration of (2.21) between z and η2 leads to:

p(η2) − p(z) = −g

∫ η2

z
̺dz, (2.22)

and differentiation of (2.22) with respect to x:

∂xp(η2) − ∂xp = −g∂x

∫ η2

z
̺dz. (2.23)

The term ∂xp(η2) is the atmospheric pressure gradient which is neglected here:

∂xp(η2) = 0. (2.24)

Let us now divide (2.23) by the reference density ̺0:

−
1

̺0
∂xp = −

g

̺0
∂x

∫ η2

z
̺dz. (2.25)

Equation (2.20) together with (2.25) results in the dynamic equation for the horizontal
velocity component:

∂tu + ∂xu2 + ∂z(wu) + ∂zτ = −
g

̺0
∂x

∫ η2

z
̺dz. (2.26)

Equation (2.26) is being integrated from η1 to η2 to obtain a transport equation for the
vertically averaged momentum in the upper layer:

11



2.2. 2D TWO LAYER MODEL EQUATIONS

∫ η2

η1

∂tudz

︸ ︷︷ ︸

i

+

∫ η2

η1

∂xu2dz

︸ ︷︷ ︸

j

+ w(η2)
︸ ︷︷ ︸

k

u(η2) − w(η1)
︸ ︷︷ ︸

l

u(η1) + τs − τi

= −
g

̺0

∫ η2

η1

∂x

∫ η2

z
̺2dzdz

= −
g

̺0

∫ η2

η1

∂xη2̺2dz

= −
g

̺0
h2̺2∂xη2,

(2.27)

where τs is the surface stress and τi the interfacial stress and ̺(z) = ̺2 = const for
η1 ≤ z ≤ η2. Now equation (2.27) is simplified under use of the Leibnitz-Rule (Bronstein

and Semendjajew [1984]) for terms i and j in (2.27). The kinematic boundary conditions
(2.11) are used for terms k and l in (2.27) and the reference density ̺0 is set equal to
̺2:

∂t

∫ η2

η1

udz − ∂tη2u(η2)
︸ ︷︷ ︸

m

+ ∂tη1u(η1)
︸ ︷︷ ︸

n

+∂x

∫ η2

η1

u2dz − ∂xη2u
2(η2)

︸ ︷︷ ︸

o

+ ∂xη1u
2(η1)

︸ ︷︷ ︸

p

+ (∂tη2 + u(η2)∂xη2)u(η2)
︸ ︷︷ ︸

q

− (∂tη1 + u(η1)∂xη1)u(η1)
︸ ︷︷ ︸

r

+τs − τi

= −gh2∂xη2

(2.28)

Terms m, n, o, p, q and r cancel out each other in 2.28:

∂t

∫ η2

η1

udz + ∂x

∫ η2

η1

u2dz + τs − τi = −gh2∂xη2 (2.29)

With the approximation u = u2 being constant with respect to the spatial coordinate
z for η1 ≤ z ≤ η2 we obtain:

∫ η2

η1

u2dz = h2u
2
2, (2.30)

what means that homogeneous horizontal velocity is assumed within the upper layer
as well as for the lower layer. As a consequence, the two layer model equations are
dealing with mean velocities in the upper and lower layer. Hence all processes due to

12



2.2.2 DYNAMIC EQUATIONS FOR HORIZONTAL VELOCITIES

velocity gradients take place at the interface. Finally we get the conservative momentum
equation for u2:

∂t(h2u2) + ∂x

(

h2u
2
2

)

+ τs − τi = −gh2∂xη2. (2.31)

where conservative means that this equation is momentum conserving in contrast to
the differential form (2.36) derived below.
To get the differential form of equation (2.31) some further mathematical manipulations
are needed. With the rules of differential calculus we have:

h2∂tu2 + u2∂th2 + h2u2∂xu2 + u2∂x(h2u2) + τs − τi = −gh2∂xη2, (2.32)

and the differentiation ∂th2 results in the following:

∂th2 = ∂t(η2 − η1) = ∂tη2 − ∂tη1. (2.33)

Let us now use the dynamic equation for the interface elevation (2.17) and the surface
elevation (2.18) together with (2.33):

∂th2 = −∂x(h1u1) − ∂x(h2u2) + ∂x(h1u1) = −∂x(h2u2). (2.34)

Equations (2.32) and (2.34) can be transformed into the relation:

h2∂tu2 + h2u2∂xu2 + τs − τi = −gh2∂xη2. (2.35)

After division of (2.35) by h2 and adding the horizontal momentum diffusion term we
will get the differential equation for the horizontal velocity component u2 in the upper
layer:

∂tu2 + u2∂xu2 − ∂x(AH∂xu2) +
τs

h2
−

τi

h2
= −g∂xη2, (2.36)

with AH being the horizontal momentum diffusion coefficient.

Derivation of equation of horizontal velocity u1 in lower layer

Now we will derive the equation for u1 with the help of (2.26). The integration of
(2.26) within the borders of −H and η1 will lead to the differential form of the dynamic
equation for the horizontal velocity component u1 in the lower layer. We set ̺0 = ̺2

(see also 2.27) and use the reduced gravity g
′

which is:

g
′

= g(̺1 − ̺2)/̺2. (2.37)

For the implementation of Entrainment (see section 2.2.5) that is the mixing between
the turbulent bottom current and the ambient water and hence transport of mass and
momentum due to production of turbulent kinetic energy or shear strain at the interface,
the density of the lower layer has to be a function of the spatial coordinate x and time
t: ̺1 = ̺1(x, t). The density ̺2 in the upper layer remains constant (2.2):
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2.2. 2D TWO LAYER MODEL EQUATIONS

∫ η1

−H
∂tudz

︸ ︷︷ ︸

i

+

∫ η1

−H
∂xu2z

︸ ︷︷ ︸

j

+ w(η1)
︸ ︷︷ ︸

k

u(η1) − w(−H)
︸ ︷︷ ︸

l

u(−H) + τi − τb

= −
g

̺0

∫ η1

−H
∂x

∫ η2

z
̺dzdz

= −
g

̺0

∫ η1

−H
∂x

(∫ η1

z
̺1dz +

∫ η2

η1

̺2dz

)

dz

= −
g

̺0

∫ η1

−H
∂x((η1 − z)̺1 + (η2 − η1)̺2)dz

= −
g

̺0

∫ η1

−H
(η1∂x̺1 + ̺1∂xη1 − z∂x̺1 + ̺2∂xη2 − ̺2∂xη1)dz

= −
g

̺0
h1(̺1 − ̺2)∂xη1 −

g

̺0
h1̺2∂xη2 +

g

2̺0
∂x̺1(η

2
1 − H2) −

g

̺0
η1∂x̺1(η1 + H)

= −g
′

h1∂xη1 − gh1∂xη2 −
g

̺2

h2
1

2
∂x̺1,

(2.38)
with τi being the interfacial stress and τb being the bottom stress.
Under use of some algebraic transformations with the help of the Leibniz-Rule (Bron-

stein and Semendjajew [1984]) and the boundary conditions (2.11) for the terms i,
j, k and l in (2.38), we can write down the equation for u1, the horizontal velocity
component in the lower layer, in analogy to equation (2.36) for the horizontal veloc-
ity component u2 in the upper layer in differential form. Additionally the horizontal
momentum diffusion term is inserted:

∂tu1 + u1∂xu1 − ∂x(AH∂xu1) +
τi

h1
−

τb

h1
= −g

′

∂xη1 − g∂xη2 −
g

̺2

h1

2
∂x̺1 (2.39)

and for constant density ∂x̺1 = ∂x̺1 = 0:

∂tu1 + u1∂xu1 − ∂x(AH∂xu1) +
τi

h1
−

τb

h1
= −g

′

∂xη1 − g∂xη2 (2.40)

2.2.3 Bottom friction

The bottom friction obeys the quadratic friction law (e.g. Simons [1980]):

τb = CD | u1 | u1, (2.41)

with CD being the dimensionless bottom drag coefficient. There are different estima-
tions of the bottom drag coefficient with for example the widely used value of 0.0025
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2.2.3 BOTTOM FRICTION

Figure 2.2: Diagram showing the range of the bottom drag coefficient under assumption of
the logarithmic law for the velocity profile at the bottom.

in circulation models (Simons [1980]; Backhaus [1985]) up to values of 0.03 for dense
bottom currents (Bowden [1960]) and 0.15 for the simulation of an overflow (Smith

[1975]).
Another attempt is to calculate the bottom stress under the assumption of the loga-
rithmic law (Fig. 2.2 Baumert et al. [1989]) for the whole lower layer:

u(z) − u(0) =
u∗

κ
ln

(
z + z0

z0

)

,
(2.42)

with u(0) = 0, u∗ being the friction velocity, z0 the bottom roughness length with
typical values of 1 mm and κ the Karman constant (κ = 0.4) which arises in wall
turbulence and is experimentally determined.
The bottom stress τb is linked with the friction velocity u∗ by:

τb := u2
∗

(2.43)

whereas:

u2
∗

= u2CD (2.44)

In addition the following is obtained with the help of (2.42):

τb = u2(z)
κ2

ln2(z+z0

z0
)

︸ ︷︷ ︸

CD

(2.45)

Hence the bottom drag coefficient is calculated by:
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2.2. 2D TWO LAYER MODEL EQUATIONS

CD =
τb

u2
=

κ2

ln2

(
z + z0

z0

) .
(2.46)

Integration over (2.42) gives the following assumption for the thickness of the logarith-
mic bottom layer:

2z = h1. (2.47)

For the limit of low bottom layer thickness the bottom drag coefficient is infinite:

lim
z→0

Cd = ∞. (2.48)

Hence the velocity has the following physically expected relationship to the layer thick-
ness:

lim
z→0

u1 = 0. (2.49)

The widely used value of 0.0025 (Simons [1980]; Backhaus [1985]) for the bottom drag
coefficient can be found for values of h1 ≈ 5 m of the lower layer (see Fig. 2.2). Fig.
2.2 plots the bottom drag coefficient as a function of the bottom roughness z0 with
values of z0 = 0.001, 0.01and0.1. With higher values of the bottom roughness length
the bottom drag coefficient is increasing. In case of the Arkona inflow event (Chapt.
5) with simulated, mean plume thicknesses between 5 m and 10 m the geostrophic
balance of the bottom flow would be significantly modulated by bottom friction under
bottom roughness lengths of 1 cm. Thus this would result in a propagation down the
slope with bottom mean bottom drag coefficients nearly six times higher for bottom
roughness lengths of 1 cm compared with z0 = 0.001. Experiments made with the 3D
two layer model (see Fig. 5.8) and different assumptions for the bottom drag coefficient
with CD = 0.0025 and the calculation under use of the logarithmic law, have shown
that the differences are small. In consideration of the fact that the logarithmic law
is a more physical assumption, it is maintained for further simulations. Furthermore
under use of the logarithmic law, the bottom roughness length is included and may
be changing due to different sediment properties and small scale topographic features.
Simulations under conditions of different soil conditions are not made within this thesis.

2.2.4 Horizontal density advection

The horizontal advection of density, respectively salinity, is obtained by solving the
continuity equation which is:

∂̺

∂t
+ ~∆(̺~u) = 0 (2.50)

with ~u being the current velocity (2.53) and ̺ = ̺1 the density in the lower layer.
The surface water of the Arkona Sea can be assumed to consist of water with mean
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2.2.5 ENTRAINMENT

salinity values around 8 psu . This value is proved by observational data (Burchard

et al. [2005]; Liljebladh and Stigebrandt [1996]). Thus the process of horizonal advection
of density in the upper layer is assumed to be negligible (2.2).
Hence the horizontal advection of density in the lower layer is formulated by the fol-
lowing equation:

∂h1̺1

∂t
+

∂u1h1̺1

∂x
= 0. (2.51)

This equation can be verified when applying ̺ =constant to (2.51). By doing so equa-
tion (2.63) is obtained with ∂th1 = ∂tη1.

2.2.5 Entrainment

z

x

linear slope

lower layer

ρ

ρ

(x,t)

(x,t)
1

2

u (x,t)

u (x,t)
2

h (x,t)
1

h (x,t)
2

α

wE

1

upper layer

Figure 2.3: The entrainment velocity wE or the entrainment process itself will cause fluxes
of mass and momentum through the interface. The entrainment rate E depends on the local
values as the current velocity u1, the density difference between upper and lower layer and the
thickness of the lower layer h1.

The entrainment process Entrainment (e.g. Turner [1973])in case of the two layer
model is the turbulent mixing process of the upper layer into the lower layer. The
opposite of entrainment is detrainment that is not being implemented into this two
layer model. The state of the four variables velocity u1, v1, height of the lower layer
h1, bottom friction and density difference between upper and lower layer define the
entrainment rate E:

E =
wE

| ~u |
(2.52)

with wE being the entrainment velocity in spatial z−direction (Fig. 2.3) and | ~u | the
current speed. This relation assumes that the rate of entrainment E is proportional to
the current speed | ~u |:
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2.2. 2D TWO LAYER MODEL EQUATIONS

| ~u1 |=
√

u2
1 + v2

1 . (2.53)

Production of turbulent kinetic energy due to bottom friction and shear strain produces
a flux of mass and momentum from the upper layer into the lower layer. Thus the
increasing thickness h1 of the lower layer will lead to higher values of the potential
energy (Oguz et al. [1990]).
Generally the entrainment is a bulk characterization of the turbulent mixing against
the stabilizing effects of stratification and can be explained as a function of the Froude
number (Kundu and Cohen [1997]):

Fr =
| ~u1 |

√

g′h1

. (2.54)

The entrainment concept was developed by G.I. Taylor during investigations of ascend-
ing gases in the layered atmosphere (Turner [1986]). The concept of entrainment (2.52)
with the entrainment rate E depending on the current speed has been applied with the
work of Ellison and Turner [1959] for a dense bottom current on a slope. During lab-
oratory experiments Ellison and Turner [1959] has shown that E is a function of the
Richardson number, that is for a two layer situation defined as:

Ri =
g
′

h1

(| ~u |)2
(2.55)

which expresses the ratio of potential to kinetic energy (Kundu and Cohen [1997]).
The reciprocal of the square root of the Richardson number is the Froude number. The
assumption of a simple linear relation between entrainment parameter and slope angle
α has been suggested by Bo Pedersen [1980a]:

E = cp sin α (2.56)

with cp being experimentally determined (cp = 0.072, see Bo Pedersen [1980a]; Buch

[1982]) under the condition that sinα < 0.01. For a hade of α = 0.5◦, which is a
realistic value for a steep continental slope, this assumption is justified. Furthermore
Bo Pedersen [1980a] has shown that for a balance between downhill-slope force and
bottom friction the following relation is obtained:

E = cpCDFr2 =
cpCD

Ri
. (2.57)

Due to the fact that the Coriolis force plays a significant role for oceanographic flows,
this assumption has been proved to be also a satisfying approximation for flows driven
by the Coriolis force (Bo Pedersen [1980b]).
Many studies implicate greater complexity in the entrainment process of gravity cur-
rents than it is contained in the entrainment models only depending on the Froude
number. Various dependencies of the entrainment rate on for example the ambient
stratification (Baines [2001]) or wave breaking (Cenedese et al. [2004]) do exist. Addi-
tionally relations between hydraulic control points and entrainment have been carried

18
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out (Hornung et al. [1995]) whereas the effect of hydraulic jumps is only poorly under-
stood for rotational systems (Pratt [1987]).
The work of Arneborg et al. [2005] tries to obtain an entrainment formulation taking
the Coriolis force into account. With a 19 hour of obtained time series of dissipation,
stratification and horizontal velocities for a dense gravity current propagating into the
Arkona Basin, solutions of the 1D turbulence model GOTM (Umlauf et al. [2005]) have
been validated against observations (Arneborg et al. [2005]). The main dynamics for
the dense gravity current are explained by simple one-dimensional theory whereas the
gravitational term in the dynamic equations is balanced by bottom friction and the
Coriolis force is balanced by a cross-flow pressure gradient. After insertion of the verti-
cally integrated parameters for the simple geometry and under use of some assumptions
(mild slope, quasi-geostrophic) the Froude (2.54) and the Ekman number K:

K =
CD | ~u1 |

fh1
(2.58)

which symbolizes the relation between the height of the Ekman layer and the thickness
of the gravity current, are obtained. The relation between the entrainment parameter
E, Fr and Rf is as follows:

E = 2CDRfFr2 (2.59)

with Rf the bulk flux Richardson number being the ratio between shear production P
and buoyancy production B:

Rf =
B

P
. (2.60)

(2.59) assumes the entrainment is a function of bottom drag coefficient CD, bulk flux
Richardson number and known Froude number. CD is assumed to be constant. The
flux Richardson number is estimated with the help of turbulence measurements from a
vertically profiled plume. With a high resolution turbulence model, these observations
have been reproduced quite well. Then the simple model with the integrated parameters
is used to simulate various idealized scenarios. With the help of a fitting procedure the
following relation between flux Richardson number Rf , Froude number Fr and Ekman
number K is obtained (Fig. 2.4):

Rf = 0.044Fr0.77K0.67. (2.61)

Thus with a combination of (2.59) with (2.61) the entrainment rate is formulated by:

E =
wE

| ~u1 |
= 0.008CDFr2.77K0.67

(2.62)

The advantage of the entrainment rate model by Arneborg et al. [2005] especially for
this two layer model is that it has been validated by a process study in the Arkona
Basin and the simulation of the Arkona inflow event is a final goal of this thesis.
It must be noted that the non-dimensional parameter E has proved very useful as a
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2.2. 2D TWO LAYER MODEL EQUATIONS

Figure 2.4: The bulk flux Richardson number as a function of a nonlinear combination of
Froude and Ekman number: K0.67Fr0.77. The dashed line is the function. Picture taken from
Arneborg et al. [2005]

modeling and parametrisation tool for the characterization of mixing in inhomogeneous
systems.
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2.3 Summary of 2D model equations

The dynamic equations for the surface and interface elevation are :

∂tη1 = −∂x(h1u1)

∂tη2 = −∂x(h1u1) − ∂x(h2u2)
(2.63)

and for the dynamic equations of motion for vertically integrated velocity u1 and u2

the differential form:

∂tu1 + ∂xu2
1

︸ ︷︷ ︸

ADV

−CD | u1 |
u1

h1
︸ ︷︷ ︸

FRIC

− ∂x(AH∂xu1)
︸ ︷︷ ︸

DIFF

= − g
′

∂xη1
︸ ︷︷ ︸

PRESSI

− g∂xη2
︸ ︷︷ ︸

PRESSE

−
g

̺2

h1

2
∂x̺1

︸ ︷︷ ︸

RHO

∂tu2 + ∂xu2
2 − ∂x(AH∂xu2) = −g∂xη2

(2.64)
with ADV being the term for horizontal momentum advection, FRIC the term due to
bottom friction, DIFF the horizontal momentum diffusion term, PRESSI the internal
pressure gradient term, PRESSE the external pressure gradient term and RHO the
term that describes dynamics due to horizontal density gradients within the lower layer.
Thus the conservative form with vertically integrated transports is:

∂t(U1) + ∂x(u2
1h1) − h1CD | u1 |

u1

h1
− ∂x(AH∂xU1) = −g

′

h1∂xη1 − gh1∂xη2 −
g

̺2

h2
1

2
∂x̺1

∂t(U2) + ∂x(u2
2h2) − ∂x(AH∂xU2) = −gh2∂xη2

(2.65)

with U1, U2 being the vertically integrated transports in the upper and lower layer:

U1 = u1h1

U2 = u2h2
(2.66)
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2.4 3D two layer model equations

In this section the two layer model equations for the 3D case are given. With the help
of (2.63) and (2.65) the model equations are extended under conclusion by analogy.
Hence all terms of the 2D model equations and the additional mixed terms for advec-
tive and diffusive processes are inserted. For the Coriolis force the Coriolis parameter
f = 2 Ω sinα = 0.0001s−1 with the angular velocity Ω = 0.73 · 10−4 s−1 and latitude
α ∼= 55◦ is used.

2.4.1 Dynamic equations for surface and interface

With reference to (2.63) the dynamic equations for surface and interface elevation are:

∂tη1 = −∂x(h1u1) − ∂y(h1v1)

∂tη2 = −∂x(h1u1) − ∂x(h2u2) − ∂y(h1v1) − ∂y(h2v2)
(2.67)

with the additional terms −∂y(h1v1) and −∂y(h2v2) for the spatial y−direction.

2.4.2 Bottom friction

The bottom friction for the 3D two layer model simply applies to the second horizontal
coordinate y the same way as (2.41) in spatial x−direction and can be written as:

τx
b = CD | u1 | u1,

τy
b = CD | v1 | v1,

(2.68)

2.4.3 Horizontal density advection

The horizontal density advection for the 3D case according to (2.51) is as follows:

∂h1̺1

∂t
+

∂u1h1̺1

∂x
+

∂v1h1̺1

∂y
= 0 (2.69)

2.4.4 Horizontal momentum diffusion

The horizontal momentum diffusion is formulated by the following equations represent-
ing the current speed in meridional and longitudinal direction under addition of the
mixed terms:

∂tu +... − ∂x(AH∂xu) −∂y(AH(∂yu + ∂xv)) = ...

∂tv +... − ∂y(AH∂yv) −∂x(AH(∂yu + ∂xv)) = ...
(2.70)
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2.4.5 Dynamic equations for horizontal transport

Equation (2.65) together with preceding steps will give the dynamic equations for hor-
izontal transport U1, V1 in lower and U2, V2 upper layer:

∂t(U1) + ∂x(u2
1h1) + ∂y(h1u1v1) − h1CD | u1 |

u1

h1
−

∂x(AH∂xU1) − ∂y(AH(∂yU1 + ∂xV1)) − fV1 = −g
′

h1∂xη1 − gh1∂xη2 −
g

̺2

h2
1

2
∂x̺1

∂t(U2) + ∂x(u2
2h2) + ∂y(h2u2v2)−

∂x(AH∂xU1) − ∂y(AH(∂yU2 + ∂xV2)) − fV2 = −gh2∂xη2

∂t(V1) + ∂y(v
2
1h1) + ∂x(h1u1v1) − h1CD | v1 |

v1

h1
−

∂y(AH∂yU1) − ∂x(AH(∂yU1 + ∂xV1)) + fU1 = −g
′

h1∂yη1 − gh1∂yη2 −
g

̺2

h2
1

2
∂y̺1

∂t(V2) + ∂y(v
2
2h2) + ∂x(h2u2v2)−

∂y(AH∂yU2) − ∂x(AH(∂yU1 + ∂xV1)) + fU2 = −gh2∂yη2

(2.71)

2.4.6 Entrainment

No changes to the entrainment formulation of (2.62) and numerical implementation
has to be applied for the 3D case. Entrainment is calculated at the elevation points
while the adaption of the modified transports in upper and lower layer after impact
of entrainment is calculated with the median of the adjacent elevation points. The
updates of density, elevation and transports are formulated as shown in 2.2.5 where
the calculation of the additional parameters V1 and V2 for the 3D case is equivalent
to the calculation of U1 and U2 for the 2D case due to the reason that entrainment is
assumed to be a local process and can be calculated with the informations of a single
water column.
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2.5. SUMMARY OF 3D MODEL EQUATIONS

2.5 Summary of 3D model equations

The dynamic equations for the surface and interface elevation are :

∂tη1 = −∂x(h1u1) − ∂y(h1v1)

∂tη2 = −∂x(h1u1) − ∂x(h2u2) − ∂y(h1v1) − ∂y(h2v2)
(2.72)

and for the dynamic equations of motion for vertically integrated transports for the
transport U1 in the lower layer in spatial x−direction in conservative form:

∂t(U1) + ∂x(u2
1h1) + ∂y(h1u1v1) − h1CD | u1 |

u1

h1
−

∂x(AH∂xU1) − ∂y(AH(∂yU1 + ∂xV1)) − fV1 = −g
′

h1∂xη1 − gh1∂xη2 −
g

̺2

h2
1

2
∂x̺1,

(2.73)
and for the transport U2 in the upper layer in spatial x−direction:

∂t(U2) + ∂x(u2
2h2) + ∂y(h2u2v2)−

∂x(AH∂xU1) − ∂y(AH(∂yU2 + ∂xV2)) − fV2 = −gh2∂xη2.
(2.74)

The vertically integrated transport V1 in the lower layer in spatial y−direction in con-
servative form is as follows:

∂t(V1) + ∂y(v
2
1h1) + ∂x(h1u1v1) − h1CD | v1 |

v1

h1
−

∂y(AH∂yU1) − ∂x(AH(∂yU1 + ∂xV1)) + fU1 = −g
′

h1∂yη1 − gh1∂yη2 −
g

̺2

h2
1

2
∂y̺1,

(2.75)
and the transport V2 in the upper layer in spatial y−direction in conservative form:

∂t(V2) + ∂y(v
2
2h2) + ∂x(h2u2v2)−

∂y(AH∂yU2) − ∂x(AH(∂yU1 + ∂xV1)) + fU2 = −gh2∂yη2

(2.76)
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Chapter 3

Numerical implementation

3.1 Discretisation and numerical implementation

The numerical solution requires the domain to be discretized while the governing equa-
tions are reduced to their finite difference equivalents. The spatial grid used for dis-
cretisation of the 2D two layer model equations is a slice through the Arakawa-C-Grid
(Mesinger and Arakawa [1976]) presented in Fig. 3.1. This grid type belongs to a class
of staggered grids not discussed here. Hence the staggered grid used for the 3D model
equations is the Arakawa C grid represented by Fig. 3.2. The discrete values ui are
given on the interval interfaces. All ηi, and ̺i are given in the centres of these intervals.

x

u
i−1

u
i

u
i+1

η η i+1i

u

η

u

η

u

η

0

21 3

21

Figure 3.1: Sketch showing the staggered grid for numerical discretisation of differential equa-
tions.

This section shows how the dynamic equations, advective terms, diffusive terms and
bottom friction are discretized. Some discretisations are formulated in explicit and more
stable implicit form while finally the model uses, when assigned, the implicit form. The
term ’explicit’ denotes a scheme where all terms on the right hand side of for example
equation (2.63) are evaluated at time steps n, n − 1, ... . That means that at any
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3.2. DISCRETIATION FOR THE 2D TWO LAYER MODEL

* * *

***

* * *

** *

j

i

+++

+ + +

+++

Figure 3.2: Sketch showing the staggered grid for numerical discretisation of differential equa-
tions whereas the following symbols are used: o: U-points; +: η−points; *: V-points. The
inserted box denotes grid points with same index (i,j).

given time tn the right hand side is known from previous time steps. ’Implicit’ on the
other hand is a scheme where some of the terms on the right hand side of a partial
differential equation are evaluated at time step tn+1 and hence are not known at tn.
A solution of this ’problem’ is, that one only need to transfer these unknown terms to
the left hand side of the equation and invert the terms for the unknown variables with
tn+1. The discretisation of bottom drag for example, shown in Section 3.2.5, uses the
implicit scheme.

3.2 Discretiation for the 2D two layer model

3.2.1 Dynamic equations for surface and interface

The discretized dynamic equations for the surface elevation η2 and interface elevation
η1 can be written as:

ηn+1
1,i − ηn

1,i

∆t
= −

hn
1,iu

n
1,i − hn

1,i−1u
n
1,i−1

∆x
,

ηn+1
2,i − ηn

2,i

∆t
= −

hn
1,iu

n
1,i − hn

1,i−1u
n
1,i−1

∆x
−

hn
2,iu

n
2,i − hn

2,i−1u
n
2,i−1

∆x
,

(3.1)
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3.2.2 HORIZONTAL MOMENTUM ADVECTION

u uii−1

ii−1 i+1

η i η i+1 ui+1

uη uη
i i

i

uη
i
= u u+i i−1

2
uη

i

uη
i
< 0: use

> 0: use  ui−1

ui

flow direction

flow direction

Figure 3.3: The first order upstream scheme for horizontal momentum advection in two layer
model. The first oder upstream scheme investigates the flow direction at the actual grid box to
guarantee that information is passed from the correct grid point in flow direction.

whereas the thicknesses hn
1,i, hn

2,i of the upper and lower layer at the interval position i
for the velocity grid points are explicit calculated by:

hn
1,i = 0.5(ηn

1,i+1 + ηn
1,i) + H(x),

hn
2,i = 0.5(ηn

2,i+1 − ηn
1,i+1 + ηn

2,i − ηn
1,i),

(3.2)

and in implicit form:

hn
1,i = 0.25(ηn

1,i+1 + ηn
1,i + ηn−1

1,i+1 + ηn−1
1,i ) + H(x),

hn
2,i = 0.25(ηn

2,i+1 − ηn
1,i+1 + ηn

2,i − ηn
1,i + ηn−1

2,i+1 − ηn−1
1,i+1 + ηn−1

2,i − ηn−1
1,i ).

(3.3)

3.2.2 Horizontal momentum advection

The discretisation of horizontal momentum advection is done by first order upstream
(Fig. 3.3). The first order upstream scheme applied for the differential form of momen-
tum equations is the following:

un+1
1/2,i − un

1/2,i

∆t
= −

1

∆x

{

un
1/2,i(u

n
1/2,i − un

1/2,i−1) : un
1/2,i > 0

un
1/2,i(u

n
1/2,i+1 − un

1/2,i) : un
1/2,i ≤ 0

(3.4)

The first order upstream scheme for the conservative form of the momentum equations
is as follows:

Uadv
1/2,i =

∆t

∆x
0.5(Un

1/2,i + Un
1/2,i)







Un
1/2,i−1

hn
1/2,i−1

: Un
1/2,i−1 + Un

1/2,i ≥ 0

:
Un

1/2,i

hn
1/2,i

: Un
1/2,i−1 + Un

1/2,i < 0

(3.5)
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3.2. DISCRETIATION FOR THE 2D TWO LAYER MODEL

so that horizontal momentum advection is discretized with:

Un+1
1/2,i − Un

1/2,i

∆t
= −

Uadv
1/2,i+1 − Uadv

1/2,i

∆x
. (3.6)

3.2.3 Horizontal density advection

The equation for advection of density (2.51) is discretied with the first order upstream
scheme:

̺n+1
1,i =

̺n
1,ih

n
1,i −

∆t(̺adv
1,i − ̺adv

1,i−1)

∆x
hn+1

1,i

(3.7)

with the ̺adv
1,i -term being calculated with first order upstream:

̺adv
1,i =

{

u1,ih1,i̺1,i : u1 > 0
u1,ih1,i̺1,i+1 : u1 ≤ 0

(3.8)

3.2.4 Horizontal momentum diffusion

The diffusion equation is as follows:

∂u

∂t
= AH

∂2u

∂x2
(3.9)

with AH being the diffusion coefficient. This is a problem of secondary derivative and
can be discretized as follows:

Un+1
1/2,i − Un

1/2,i

∆t
= − AH

Un
1/2,i+1 − 2Un

1/2,i + Un
1/2,i−1

(∆x)2
. (3.10)

3.2.5 Bottom friction

The influence of bottom friction to the lower layer is discretized with:

un+1
1,i − un

1,i

∆t
= CD | un

1,i |
un

1,i

hn
1,i

, (3.11)

with CD being the drag coefficient.

The explicit bottom drag formulation is now being formed to implicit formulation. For
the calculation of the horizontal velocity component in the lower layer with:

û = un+1
i

u = un
i

(3.12)

and A being the velocity term without consideration of bottom drag the equation is
manipulated by the following steps:
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∂tu1 = A −
CD u1 | u1 |

h
, (3.13)

that can be transformed into:

û1 − u1

∆t
= A −

CD û1 | u1 |

h

û1(1 + CD
∆t

h
| u1 |) = u1 + ∆t A

û1 =
u1 + ∆tA

1 +
CD

h
∆t | u1 |

.

(3.14)

The benefit of the implicit formulation is that for all variations of h, CD, ∆t and u1

the retarding effect of friction is maintained.

3.3 Full discretized two layer model equations

The explicit discretisation for η1 and η2 is formulated by:

ηn+1
1,i − ηn

1,i

∆t
= −

hn
1,iu

n
1,i − hn

1,i−1u
n
1,i−1

∆x
,

ηn+1
2,i − ηn

2,i

∆t
= −

hn
1,iu

n
1,i − hn

1,i−1u
n
1,i−1

∆x
−

hn
2,iu

n
2,i − hn

2,i−1u
n
2,i−1

∆x
.

(3.15)

The discretized model equations for the horizontal velocity in vertical integrated form
(Section 2.3) with advection (3.4) and (3.6) and diffusion (3.12) are of the following
form for explicit drag:
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3.4. DISCRETISATION AND NUMERICAL IMPLEMENTATION FOR THE 3D

CASE

Un+1
1,i − Un

1,i

∆t
= −hn

1,ig
ηn
2,i+1 − ηn

2,i

∆x
︸ ︷︷ ︸

PRESSEn
i

+ AH

Un
1,i+1 − 2Un

1,i + Un
1,i−1

(∆x)2
︸ ︷︷ ︸

DIFF n
i

−hn
1,ig

′ ηn
1,i+1 − ηn

1,i

∆x
︸ ︷︷ ︸

PRESSIn
i

−
Uadv

1,i+1 − Uadv
1,i

∆x
︸ ︷︷ ︸

ADV n
i

−CD

| Un
1,i | Un

1,i

(hn
1,i)

2

︸ ︷︷ ︸

FRICn
i

−
g

̺2

(hn
1,i+1)

2

2

̺n
1,i+1 − ̺n

1,i

∆x
︸ ︷︷ ︸

RHOn
i

Un+1
2,i − Un

2,i

∆t
= −hn

2,ig
ηn
2,i+1 − ηn

2,i

∆x

+AH

Un
2,i+1 − 2Un

2,i + Un
2,i−1

(∆x)2
−

Uadv
2,i+1 − Uadv

2,i

∆x
(3.16)

with ADV being the term for horizontal momentum advection, FRIC the term due to
bottom friction, DIFF the horizontal momentum diffusion term, PRESSI the internal
pressure gradient term, PRESSE the external pressure gradient term and RHO the
term reproducing dynamics due to horizontal density gradients. The formulation of
(3.16) with (3.14) for implicit drag is the following:

Un+1
1,i =

Un
1,i + ∆t(−PRESSIn

i + DIFFn
i − PRESSEn

i − ADV n
i − RHOn

i )

1 + ∆tCD

| Un
1,i |

(hn
1,i)

2

(3.17)

3.4 Discretisation and numerical implementation for the

3D case

This section shows the model discretisation of the dynamic equations, advective terms,
bottom friction and diffusion given in Chapt. 2. Some discretisations are formulated in
implicit and explicit form while finally the model uses, when assigned, the implicit form.
The numerical discretisation is implemented with the Arakawa-C-Grid (Mesinger and

Arakawa [1976]). The staggered grid is represented by Fig. 3.2. The discrete values
U1/2 are given on the interval interfaces in i alternatively x-direction and the discrete
values V1/2 are given on the interval interfaces in j alternatively y-direction. All ηi are
given in the centres of these intervals.
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3.4.1 DYNAMIC EQUATIONS FOR SURFACE AND INTERFACE

3.4.1 Dynamic equations for surface and interface

The discretized dynamic equations for the surface η2 and interface elevation η1 can be
written as:

ηn+1
1,i,j − ηn

1,i,j

∆t
= −

hn
1,i,ju

n
1,i,j − hn

1,i−1,ju
n
1,i−1,j

∆x
−

hn
1,i,ju

n
1,i,j − hn

1,i,j−1u
n
1,i,j−1

∆y
,

ηn+1
2,i,j − ηn

2,i,j

∆t
= −

hn
1,i,ju

n
1,i,j − hn

1,i−1,ju
n
1,i−1,j

∆x
−

hn
2,i,ju

n
2,i,j − hn

2,i−1,ju
n
2,i−1,j

∆x

−
hn

1,i,ju
n
1,i,j − hn

1,i,j−1u
n
1,i,j−1

∆y
−

hn
2,i,ju

n
2,i,j − hn

2,i,j−1u
n
2,i,j−1

∆y
,

(3.18)

whereas the thicknesses hun+1
1/2,i,j and hvn+1

1/2,i,j of the upper and lower layer for the U

and V grid points at the position (i,j) are implicit calculated by:

hun
1,i,j = 0.25(ηn

1,i+1,j + ηn
1,i,j + ηn−1

1,i+1,j + ηn−1
1,i,j ) + H(x, y),

hun
2,i,j = 0.25(ηn

2,i+1,j − ηn
1,i+1,j + ηn

2,i,j − ηn
1,i,j

+ηn−1
2,i+1,j − ηn−1

1,i+1,j + ηn−1
2,i,j − ηn−1

1,i,j )

hvn
1,i,j = 0.25(ηn

1,i,j+1 + ηn
1,i,j + ηn−1

1,i,j+1 + ηn−1
1,i,j ) + H(x, y),

hvn
2,i,j = 0.25(ηn

2,i,j+1 − ηn
1,i,j+1 + ηn

2,i,j − ηn
1,i,j

+ηn−1
2,i,j+1 − ηn−1

1,i,j+1 + ηn−1
2,i,j − ηn−1

1,i,j )

(3.19)

3.4.2 Dynamic equations of motion for horizontal velocities in trans-

port form

To show the complete dynamic equations of motion for U1/2 and V1/2, advection schemes
for horizontal momentum advection, horizontal momentum diffusion and horizontal
density advection are demonstrated. Additionally the coriolis force is being considered
for the 3D flow.

Rotation: Coriolis force

The Coriolis force under use of the Arakawa grid (Fig. 3.2) has the following discreti-
sation:
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3.4. DISCRETISATION AND NUMERICAL IMPLEMENTATION FOR THE 3D

CASE

Un+1
1,j,j − Un

1,i,j

∆t
= f0.25(V n

1,i,j + V n
1,i+1,j + V n

1,i,j−1 + V n
1,i+1,j−1)

Un+1
2,j,j − Un

2,i,j

∆t
= f0.25(V n

2,i,j + V n
2,i+1,j + V n

2,i,j−1 + V n
2,i+1,j−1)

V n+1
1,j,j − V n

1,i,j

∆t
= −f0.25(Un

1,i,j + Un
1,i,j+1 + Un

1,i−1,j + Un
1,i−1,j+1)

V n+1
2,j,j − V n

2,i,j

∆t
= −f0.25(Un

2,i,j + Un
2,i,j+1 + Un

2,i−1,j + Un
2,i−1,j+1)

(3.20)

3.4.3 Horizontal momentum advection

The calculation of h1∂x(U2
1/2,i,j) is demonstrated with (3.6), the discretisation of hori-

zontal momentum advection in spatial x−direction. Thus the discretisation of h1∂x(V 2
1/2,i,j)

is equivalent to (3.6).
The discretisation of h1∂y(U1V1) and h1∂x(U1V1) with first oder upstream is:

Uadv
1/2,i,j = 0.5(Un

1/2,i,j+1 + Un
1/2,i,j)







V n
1/2,i,j

hn
1/2,i,j

: Un
1/2,i,j+1 + Un

1/2,i,j ≥ 0

:
V n
1/2,i+1,j

hn
1/2,i+1,j

: Un
1/2,i,j+1 + Un

1/2,i,j < 0

V adv
1/2,i,j = 0.5(V n

1/2,i,j+1 + V n
1/2,i,j)







Un
1/2,i,j

hn
1/2,i,j

: V n
1/2,i,j+1 + V n

1/2,i,j ≥ 0

:
Un

1/2,i+1,j

hn
1/2,i+1,j

: V n
1/2,i,j+1 + V n

1/2,i,j < 0

(3.21)

so that advection is calculated by:

Un+1
1/2,i,j − Un

1/2,i,j

∆t
=

(V adv
1/2,i,j − V adv

1/2,i−1,j)

∆x
V n+1

1/2,i,j − V n
1/2,i,j

∆t
=

(Uadv
1/2,i,j − Uadv

1/2,i−1,j)

∆y

(3.22)

3.4.4 Horizontal density advection

For the discretisation of the horizontal density advection (2.69) no further information
must be given as the discretisation in y-direction is the same as in x direction shown
in (3.7).
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3.4.5 HORIZONTAL MOMENTUM DIFFUSION

3.4.5 Horizontal momentum diffusion

The discretisation of ∂x(AH∂xu) is shown in 3.2.4. The same applies for the spatial
y-direction. The term ∂y(Ah(∂yu+∂xv)) and ∂x(Ah(∂yu+∂xv)) of (2.70) are discretized
with the central difference scheme as follows:

Un+1
1/2,i,j − Un

1/2,i,j

∆t
=

0.5 ∗ AH

∆y

(Un
1/2,i,j+1 − Un
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V n
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)
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∆x

(V n
1,i+1,j − V n
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∆x
+

Un
1,i,j+1 + Un
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1,i,j − Un

1,i−1,j

∆y

)

(3.23)

3.4.6 Bottom friction

The discretisation of bottom friction is shown in section 3.2.5. The same discretisation
is made for the 3D case so that it is not given here any more.

3.5 Full discretized two layer model equations

The explicit discretisation for η1 and η2 is formulated by:

ηn+1
1,i,j − ηn

1,i,j

∆t
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hn
1,i,ju

n
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−
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2,i,ju
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∆y
,

(3.24)

The discretized model equations for the horizontal velocity in vertical integrated form
(2.71) are of the following form for explicit drag:

33



3.5. FULL DISCRETIZED TWO LAYER MODEL EQUATIONS
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(3.25)

In addition the vertically integrated dynamic equations of motion with the implicit
form for the discretisation of bottom friction (3.14) is as follows:
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(3.26)

The dynamic equations for the vertically integrated transports in upper and lower
layer V n+1

1,i,j and V n+1
2,i,j in spatial y−direction are obtained with (3.25) by the following

transformations for the indices:

termi,j → termi,j

termi,j+1 → termi+1,j

termi+1,j → termi,j+1

termi−1,j+1 → termi+1,j−1

CORn
i → (−1) ∗ CORn

i

(3.27)
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3.6 Numerics

This section covers the description of the implemented drying and flooding algorithm,
individual model problems, that occur due to previously given two layer model equations
and discretisation, and consequences that appears while using specified algorithms and
principles.
The simulations with the two layer model dealt within this thesis were implemented with
closed lateral boundaries where the following applies for the model domain boundaries:

u1 = 0
u2 = 0
v1 = 0
v2 = 0

(3.28)

The model is not well-appointed with a ’sponge-layer’ (e.g. Roed and Cooper [1986]), an
outer dissipative domain, that would have a dissipative effect on waves or disturbances
that leave the inner model domain due to an successive coarsening of the grid box
length and increasing internal friction. Thus the appearance of disturbances or waves
will cause dynamics within the model domain that are active due to reflections at the
boundaries until they are dissipated within the model domain. Consequences of this
not yet included feature of the two layer model and the impact on internal waves or
gravity currents are not investigated within this thesis.

3.6.1 The lateral boundaries of the plume - drying and flooding algo-

rithm

The implemented drying and flooding algorithm (Fig. 3.4) guarantees that for sloping
bathymetry and non-stationary flows the interface η1 does not sink below the sea bed.
The interface can be figured as a membrane that lies on the bottom with the reference
to an arbitrarily chosen minimum thickness of Dmin/2 = 0.01m. Whenever dynamics
occur that will lead to thickness values of h1 < Dmin/2 (see Fig. 3.4) for the lower
layer the velocities of the adjacent velocity points are set to zero. While setting velocity
values at only one certain grid box to zero, the adjacent grid points could also sink below
the sea bed. Hence this algorithm has to check the thickness values of the lower layer
until all velocities leading to h1 < Dmin/2 at the elevation grid points are of value
zero. This will prevent further fading of the sea level. Consequently a grid box can be
considered as dry when h1 ≤ Dmin/2.
Dynamics that produce an increase of interface elevation turn a ’dry’ grid box into a
’flooded’ grid box. This drying and flooding algorithm easily allows to split and merge
plumes due to topographic barriers like sills.
It is assumed that the major process for thicknesses h1 of a few centimetres for the
lower layer is the balance between bottom friction (Sect. 2.2.3) and pressure gradient
(Sect. 3.6.2). The used formulation for the calculation of the bottom drag coefficient
(2.46) is exponentially growing for small thickness values h1 (see Fig. 2.2). Hence this
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Figure 3.4: (a) Pattern showing the principle of pressure gradient minimization (Burchard

et al. [2004]) during drying and flooding over sloping bathymetry. The pressure gradient calcu-
lated by the difference of ηn

i
and ηn

i+1 is un-physically high. This would cause too much water
running out of the left grid cell. The corrected pressure gradient is now represented by the
difference of η̃n

i+1 = −Hi + Dmin and ηn

i
. Another Problem that occurs with this principle of

pressure gradient minimization is, that in the case shown here where already too much water ran
out of the left grid cell, water is even flowing back. With further grid refinement this problem
is negligible. (b) Second sketch shows the grid box of the elevation with the adjacent velocity
points. In this case the sea level ηn

i+1 is less than Smin = 0.5Dmin. To prevent further fading of
the interface level, with the potentially resulting situation of a negative thickness of the lower
layer, the adjacent velocities will be set to the value of zero. This step in box ηn

i+1 perhaps will
affect the adjacent boxes. So these boxes have to be checked under use of the emergency brake,
too.
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is additionally limiting flow dynamics and avoiding negative thickness values for the
lower layer.

3.6.2 Principle of pressure gradient minimization

The principle of pressure gradient minimization (Burchard et al. [2004]) during drying
and flooding over sloping bathymetry represents a method to circumvent a special
numerical problem. That could occur while using the implemented drying and flooding
algorithm (Sect. 3.6.1). This Problem occurs when the sea surface of the cell at position
i+1 is below the sea bed of the cell at position i or contrariwise. In this case the pressure
gradient will be un-physically high. As a consequence too much water is running out
of cell i. Fig. 3.4b is explaining this numerical problem and the solution in detail.

3.6.3 Individual model problem: interface touching surface

Due to the problem, that the interface η1 can touch or even penetrate the surface
elevation η2 whenever waves with a high amplitude within the plume or the plume
itself reaches shallow waters, arrangements must be considered to circumvent this in
the model equations not intended case. Because of the calculation of the thickness of
the upper layer h1 with the difference between the interface η1 and the surface elevation
η2 (3.2) negative values for h1 can occur.
The solution suggested here is not momentum conserving due to the fact that the
velocities have to be set to zero whenever a situation occurs that will rise the interface
elevation above the surface elevation (Fig. 3.4). Hence the solution considered here
is called ’emergency brake’. Compared with the method of checking the depth of the
interface with regard to the sea bed for the drying and flooding algorithm (Sect. 3.6.1)
the ’emergency brake’ has a similar implementation: all velocities of the adjacent grid
boxes are set to zero. This procedure is repeated as often as dynamics could produce
situations with η2 − η1 ≤ Dmin.
Problems at shallow water at coastal areas where potential high velocities and unsteady
flows cause problems with the case spoken to, the bathymetry is smoothed and shallow
grid boxes with H < 3m are changed to depth values of H = 3m. During test runs this
depth value has been considered as satisfying to avoid using the ’emergency brake’.
Consequences of both smoothing the bathymetry and using the ’emergency brake’ on
the model results are not being investigated within this thesis.

3.6.4 Implementation of Entrainment

Because of the entrainment process, see (2.62), being a local process, the entrainment
is implemented into the model without any further sophistication. This process only
depends on the local values at a certain grid box as they are velocity, plume thickness
and density for a whole water column of the lower layer (plume).
After calculation of the entrainment rate with (2.62), adaptations of interface elevation,
horizontal velocities u1 and u2 and density ̺1 in the lower layer have to be done, which
are for ∂̺2/∂x = 0 as follows for density:
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Figure 3.5: This series of propagation an internal wave illustrates how momentum can get lost
when applying the ’emergency brake’. When the velocities are zero because of the ’emergency
brake’, further rising of the interface is being averted and the wave loses some of it’s momentum.
To guarantee momentum conservation, the depth at for the two layer model critical points is
being heightened up to an value that with the help of some test cases with complex bathymetry
has been considered as satisfying to avoid using the ’emergency brake’.
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With HE:

HE = wE∆t (3.30)

with ∆t denoting the applied time-step in the simulation.
The interface elevation has to be updated as follows:

ηn+1
1,i = ηn

1,i + Hn+1
E,i , (3.31)

whereas no changes to the surface elevation have to be done because the turbulent
exchange between lower and upper layer only takes place as a mixing of the upper layer
into the lower layer.
On the other hand the vertically integrated transports must be adapted for both upper
and lower layer:

Un+1
1 (i, j) = Un

1 (i, j) +
Hn+1

E Un
2 (i, j)

hn
2 (i, j)

,

Un+1
2 (i, j) =
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2 (i, j)
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2 (i, j)

(hn
2 (i, j) − Hn+1

E (i, j)).

limHE→0 Un+1
1,i = Un

1,i

(3.32)
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Chapter 4

Basic test experiments

In this chapter basic test experiments under mainly idealized conditions are imple-
mented for testing and validation of the two layer model. At the beginning the two
layer model equations are linearized to get comparable results with analytical solutions
derived for standing internal waves and plumes in a closed rectangular basin with ver-
tical walls.
The implemented idealized experiments are very helpful in understanding the output
of the two layer model during simulations of more complex model results as obtained
and discussed in Chapt. 5 with the idealized simulation of the Arkona inflow event.
Most of the test cases with simulations in a closed rectangular basin with vertical walls
are done with a constant value for the bottom drag coefficient with CD = 0.0025 as
suggested in Sect. 2.2.3. The drying and flooding algorithm is not being applied as this
algorithm is not needed for non-sloping bathymetries. As a matter of fact the output of
the two layer model is restricted only to mean physical values for a single water column
of the upper and lower layer. Consequences are for example that the process of light
water shifting above dense water can not be reproduced. This limitation of the two
layer model is being shown by means of model results discussed in Sect. 4.2.3

4.1 Experiments without entrainment

4.1.1 Experiments with linearized two layer model equations

In this section we run the existing model with an immiscible, inviscid, and incompress-
ible fluid with constant but different densities with the application to standing internal
waves (Fig. 4.1). Horizontal momentum advection and momentum diffusion is switched
off during this simulation.

To prepare the two layer model for the validation with analytical solutions, the model
equations (2.64) have to be linearized. To show that the differences in simulation results
of the linearized two layer model equations compared to the non-linear equations are
small, it is switched between linearity and non-linearity and between a one and a two
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x
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H = 20 m

z
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Figure 4.1: Schematic illustration of initial condition of standing internal wave.

layer system. The difference among linearity with ∂xh1 = 0 and non-linearity with
∂xh1 6= 0 can be shown with (2.17) and applies as well to (2.18):

non-linear: ∂tη1 = −∂x(h1u1),
linear: ∂tη1 = −h1∂x(u1).

(4.1)

Under these conditions there are four different situations to be plotted in this section:

Case Number of participating layers Linearity/Non-linearity

(1) one linear
(2) one non-linear
(3) two linear
(4) two non-linear

Fig. 4.2 points out how small the differences of the simulation results between linear
assumption and non-linear model equations are for the simulation of standing internal
waves. Fig. 4.2 shows the elevation of the standing internal wave in centre plotted
over time for the four different cases. Differences of the solutions between linearity and
non-linearity for both layer switched on are negligible. Small differences are obtained
for the case that the upper layer is switched off. The analytical solutions derived in
the next sections are only valid for the case of the upper layer switched off. Thus the
differences for the one layer system in linear and non-linear case has to be investigated
more closely. With a difference of around two hours after 16 days of simulation time
both solutions for standing internal waves with an amplitude of 0.1 m arrive at the
same state. The difference after these 16 days of simulation is below 0.6% and hence
small enough to be negligible.

4.1.2 Application to standing internal wave

In this section the analytical solution of standing internal waves in a closed rectangular
basin with vertical walls is being derived and compared with the linearized two layer
model equations.
During this experiment the upper layer is switched off and bottom friction as well as

42



4.1.2 APPLICATION TO STANDING INTERNAL WAVE

Figure 4.2: (a) Elevation plotted over time under modification of linearity and number of
participating layers. (b) Elevation of lower layer at simulation end, after 10.5 periods.
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horizontal momentum advection are not implemented. To obtain comparable results
of analytical and numerical solution, the linear assumption (4.1) between elevation and
velocity is used. A validation of the two layer model equations is accomplished with
the help of an error calculation (Fig. 4.3) between analytical and numerical solution.

Derivation of analytical solution for standing waves

The linearized shallow water equations in one spatial dimension are of the following
form:

∂tη = −H∂xu
∂tu = −g∂xη

(4.2)

with the elevation η(x, t), velocity u(x, t), the constant gravitational acceleration g and
the constant water depth H.
Equations (4.2) are now formulated as wave equations for η and u. These wave equations
will help us to obtain the wave propagation speed c. First of all equations (4.2) are
differentiated with respect to t and x:

∂x∂tη = −H∂x∂xu
∂t∂tu = −g∂t∂xη.

(4.3)

In both equations the term ∂x∂tη occurs, so that the wave equation for u is the following:

∂2
t u − Hg∂2

xu = 0. (4.4)

The wave equation for η is derived with the same procedure and is as follows:

∂2
t η − Hg∂2

xη = 0. (4.5)

Using (4.4) and (4.5), the general wave equations in one spatial dimension, the wave
propagation speed is obtained:

c =
√

gH, (4.6)

that is a function of gravitational acceleration g and height H. Equation (4.6) applies
for waves with λ > 20H in wave theory. This means that the wave propagation speed
c of such waves only depend on the depth H and not on the wavelength λ.
Now the analytical solution for the elevation ηa and velocity ua for standing waves is
derived. Here the spatial coordinate x is of the range 0 ≤ x ≤ L and L being the length
of the domain. Consequently the boundary conditions are:

ua(0, t) = ua(L, t) = 0. (4.7)

with ua representing the analytically obtained horizontal velocity.
For the initial condition we set arbitrarily:

ηa(x, 0) = 0, (4.8)
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4.1.2 APPLICATION TO STANDING INTERNAL WAVE

which means that we have no elevation at simulation start with t = 0 s for the analyt-
ically calculated elevation ηa.

An assumption for ua(x, t) will be:

ua(x, t) = 0, 5(U1 sin(k(x + ct)) + U2 sin(k(x − ct))) (4.9)

with unknown velocity amplitudes for the wave traveling to the left and to the right,
U1 and U2, and wave number k. With (4.7), for the case of standing internal waves,
the wave number k is:

k = n2π/L, for n = 1, 2, 3, ... (4.10)

With the postulation of standing waves we can derive the relation between U1 and U2.
With (4.9) we have:

ua(0, t) = 0, 5(U1 sin(kct) + U2 sin(−kct)) = 0, (4.11)

that is consequently only fulfilled for:

U1 = U2 = U. (4.12)

With the help of previous equations the analytical solution for horizontal velocity
ua(x, t) and elevation ηa(x, t) are derived with regard to the initial condition (4.8).
For ua(x, t) we can write with the help of (4.9):

ua(x, t) = 0, 5U(sin(kx + kct) + sin(kx − kct))

= 0, 5U(2 sin(kx) cos(kct))

= U sin(kx) cos(kct),

(4.13)

where kc is the angular frequency ω.

To get the equation for ηa(x, t) we use (4.13). On this note we have to differentiate
ua(x, t) with regard to x:

∂xua = kU cos(kx) cos(kct), (4.14)

thus the first equation of (4.2) is as follows:

∂tηa = −H∂xua

= −HkU cos(kx) cos(kct).
(4.15)

With integration of (4.15) between t1 and t2 we consequently have:

∫ t2

t1
∂tηa(x, t)dt = HkU cos(kx)

∫ t2

t1
cos(kct)dt. (4.16)
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With t1 = 0 s because of initial condition (4.8) and t2 = t, the solution for ηa(x, t)
finally is:

ηa(x, t2) − ηa(x, t1) = −
HkU

kc
cos(kx)(sin(kct2) − sin(kct1))

ηa(x, t) = −
HU

c
cos(kx) sin(kct)

(4.17)

We now remember the initial conditions (4.8) used for our validation. The initial-
condition ua(x, 0) is obtained if we solve (4.13) for t = 0 s, so that that the initial
conditions for ua and ηa are:

ua(x, 0) = U sin(kx),
ηa(x, 0) = 0.

(4.18)

The analytical solutions of standing internal waves with the help of the linearized shal-
low water equations (4.2) are:

variable equation

ua ua(x, t) = U sin(kx) cos(kct),

ηa ηa(x, t) = −
HU

c
cos(kx) sin(kct).

Validation of general model equations with analytical solution of standing

internal wave

We will proceed with the validation of the numerical solution of the linearized two
layer model equations. This is done by a direct comparison to the analytical equations
for standing internal waves derived above. Hence the deviation between numerical
and analytical solution is calculated and plotted (Fig. 4.3) with the help of an error
calculation. On this note the L2 norm is applied based on the number of measurements
n to calculate the error Eerr:

L2 norm: || un − ua ||0=
(∑

i(un(i) − ua(i))
2
)1/2

,

Error Eerr : Eerr =
(

1
n

∑

i(un(i) − ua(i))
2
)1/2

(4.19)

with ua being the analytical calculated velocity and un being the numerical calculated
velocity.

The numerical calculation of standing internal waves is done and the conditions ∂x̺1 =
0 and ∂t̺1 = 0 with the following simplified equations of the two layer model:

46



4.1.3 APPLICATION TO PLUME PROPAGATION

ηn+1
1,i = ηn

1,i − ∆th1

un
1,i − un

1,i−1

∆x
,

un+1
1,i = un

1,i − ∆tg
′ ηn

1,i+1 − ηn
1,i

∆x
.

(4.20)

The Error Eerr is plotted against a reduction of time-step in the simulation. It is
essential to vary the time-step in consultation with the Courant-Friedrich-Levy(CFL)
condition. This condition implements that no information should pass more than one
grid box per time step.
With the wave propagation speed c:

c =
√

gH (4.21)

we see that the CFL condition for our problem is:

∆x

∆t
≥

√

gH. (4.22)

For the initial conditions in our simulation a CFL condition of approximately 0.7 m s−1

is obtained. An error plot is provided while the time-step and the box length are varied
under the following arbitrarily chosen relation:

∆x

∆t
= 1.8CFL. (4.23)

In a double logarithmic plot, see Fig. 4.3, the relation between time-step and Error
Eerr is shown. The deviation between both simulations decreases for decreasing time
step. The non-linearity in the graph results from the machine accuracy. We can prove
this motivation if we change the codomain from double precision to real in the Fortran
source code. A decrease of time step for real can not reproduce the same results as
with the accuracy of double precision. Thus the non-linearity in the double logarithmic
plot (Fig. 4.3) is due to machine accuracy and is not founded due to certain numerical
problems with the model equations.

4.1.3 Application to plume propagation

In this section an analytical solution for a plume (Burchard [1995]) is derived. This
analytical solution is being compared with the linearized two layer model equations. It
is shown that the analytical solution is similar compared to the numerical solution with
respect to the horizontal coordinate x and the time t.
A difference to the analytical solution for standing internal waves is that bottom friction
is implemented in the analytical solution derived in this section.
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Figure 4.3: Error between numerical and analytical solution with ∆x/∆t = 1.8 CFL. Sketch
showing that further resolution of the model could only give correct results up to a certain de-
gree. The non-linearity symbolizes inaccuracies as a result of machine accuracy. This motivation
is proved with changing the codomain from double precision to real. The same non-linearity
occurs earlier.

Derivation of analytical plume solution

With equation (2.40) we switch off the upper layer (∂xη2 = 0) and add the bottom
friction (Section 2.2.3) to the model:

∂tu1 + u1∂xu1 = −g
′

∂xη1 − CD
u1 | u1 |

hu
, (4.24)

with hu = hu(x, t) being the height of the plume and CD being constant. For equation
(2.17) we can write:

∂tη1 + ∂x(huu1) = 0. (4.25)

Assuming that u1 = const. and hu = η1 will turn (4.25) into:

∂tη1 + u∂xη1 = 0, (4.26)

and (4.24) can be simplified for positive velocity values which implies that this analytical
solution only applies for a propagation in one direction:

0 = −g
′

∂xη1 − CD
u2

1

η1
. (4.27)

With our assumption that the horizontal velocity u1 is constant, a coordinate system
moving with the flow has a constant water level with respect to t:

η1 = η1(ξ); where: ξ = x − u1t. (4.28)
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According to (4.26) we have the following relation for ∂ξη:

∂tη1 = −u1∂ξη1, with: ∂xη1 = ∂ξη1. (4.29)

With (4.27) and ∂ξ = ∂x we get the differential equation for η1:

∂ξη1 = −
CD

g′
u2

1η
−1
1 . (4.30)

Solving (4.30) will lead to the analytical plume solution, with u1 = uplume = const.
being the velocity of propagation of the plume and ηa = η1 we have:

dηa

dξ
= −

CD

ηag
′
u2

plume

ηadη = −
CD

g′
u2

plumedξ

∫

ηadηa = −
CD

g
′

u2
plume

∫

dξ

η2
a

2
= −

CD

g′
u2

plumeξ + C

ηa =

√
(

−
2CD

g′
u2

plumeξ + C

)

ηa =

√
(

−
2CD

g′
u2

plume(x − uplumet) + C

)

.

(4.31)

The derivation of an analytical solution for the propagation of a plume in a rectangular
box with vertical walls with given boundary conditions for the inflow area is now being
compared with the results of the numerical solution of the linearized two layer model
equations.

Validation of general model equations with analytical plume solution

For the validation of the model equations with the analytical plume solution, the sim-
ulation starts at t = 0 s with the first velocity grid cell being ’flooded’, see Fig. 4.4.
The constant value C of (4.31) can now be calculated by using (4.31) together with the
initial condition shown in sketch (4.4):

C = −
2CD

g′
u2

plume∆x, (4.32)
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Figure 4.4: This figure is showing the initial condition for the plume test case. The first u
grid cell is flooded.

where ∆x is the length of one grid cell in the C-Grid.

For the numerical calculation of the plume elevation ηa(x, t) we have the following
conditions during the whole simulation time:

ηnumerical(t, 0) = ηa(t, 0),
unumerical(t, 0) = uplume.

(4.33)

The boundary conditions at the left side are a constant horizontal inflow velocity:
vplume = 0.2m s−1 and the height of plume given by the analytical plume solution
derived in this chapter. Figure 4.5a shows that numerical and analytical solution are
similar. To show the impact of the upper layer on the lower layer, the upper layer is
switched on and the results are plotted in Fig. 4.5b together with the result of the
upper layer switched off. The difference between both situations is significant. The
surface elevation η2 is lifted above the front of the plume and water is flowing back.
This effect of lifting of the upper layer and backward flowing water with u2 < 0 m s −1

is also demonstrated and obtained in Sect. 4.1.6 shown in Fig. 4.10.

4.1.4 Application to lock exchange experiment

In this section a more realistic fluid mechanical test case, the lock exchange test, with
bottom friction, horizontal momentum diffusion and horizontal momentum advection
is investigated. In this test case a 20 m deep closed rectangular basin of 100 km
length with vertical walls containing two fluids with a density difference of 15 kg m−3

is separated by a vertical interface in the centre. This interface is removed at t = 0. Due
to the internal pressure gradient term PRESSI in (2.64) the dense water is layering
under the lighter water. The initial condition can be seen in Fig. 4.6. A plot of the
result showing the flow at four different times can be seen in Fig. 4.7. Furthermore the
different impact of horizontal momentum advection, horizontal momentum diffusion
and bottom friction is observed.
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4.1.4 APPLICATION TO LOCK EXCHANGE EXPERIMENT

Figure 4.5: (a) Plume propagation with friction: Analytical solution (dashed) compared with
model results (points) for t = 5h, t = 11h and t = 15h. CD = 0.0025, ∆t = 0.5s, ∆x = 75m. (b)
This sketch reflects the difference between the solutions of plume propagation with upper layer
switched on and off. H = 20m, ̺1 = 1014, ̺2 = 1005, CD = 0.0025, ∆t = 0.5s, ∆x = 150m.
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Figure 4.6: Schematic illustration of initial conditions for lock exchange experiment

Model equations for lock exchange experiment

In this section we add horizontal momentum diffusion, horizontal momentum advection
and bottom friction to the model equations and use the explicit drag formulation (3.16).
A simulation of the lock exchange experiment modeled with the equations given in Sect.
2.3 verified the expectation that the layer with greater density propagates like a plume
below the lighter fluid (Fig. 4.7). A simulation of the lock exchange experiment without
horizontal momentum advection and diffusion (Fig. 4.7) shows a numerical instability
in the modeled interface. Diffusion smoothes the numerical result.

Impact of horizontal momentum advection, horizontal momentum diffusion

and bottom friction to model result

To show the different impact of advection, diffusion (AH = 10 m2 s−1) and bottom
friction to the model results the front velocity of the plume is calculated under the
following different conditions:

hor. mom. advection hor. mom. diffusion bottom friction front velocity / m s−1

on off on 0.2779
off off on 0.2983
off on on 0.2984
on off off 0.4794
on on off 0.4796
off off off 0.4916
off on off 0.4955

As expected the bottom friction has the biggest retarding impact on the current. A
comparable but smaller impact has the horizontal momentum advection that decreases
the front velocity. On the other hand the diffusion slightly increases the velocity of
propagation.
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GRADIENT

Figure 4.7: Propagation of plume in lock exchange experiment with bottom friction, horizontal
momentum advection, horizontal momentum diffusion and the following parameters: Length
= 100km, H = 20 m, ∆x = 1 km, ∆t = 10 s, AH = 10 m2 s−1, CD = 0.0025.
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Figure 4.8: Schematic illustration of initial condition of density lock exchange experiment
with the two layer model.

4.1.5 Lock exchange experiment with horizontal density gradient

In this section a test case with horizontal density gradient is implemented with the
two layer model. This test shows how un-physically the model results can be with the
assumption of mean physical values for a whole water column. For the simulation all
terms of (2.64) are inserted and the entrainment process is neglected.

The initial condition (Fig. 4.8) is a surface elevation with η2(x, t = 0 s) = 0m and a
interface elevation with η1(x, t = 0 s) = −35m. The model domain is a rectangular box
with vertical walls with a depth of H(x, t) = 50 m and a length of 230 m. The first
half of the lower layer ranging from l = 0 km to l = 115 km is filled with a fluid of
̺ = 1020 kg m−3 and the second half consists of water with ̺ = 1005 kg m−3 as shown
in Fig. 4.8.
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4.1. EXPERIMENTS WITHOUT ENTRAINMENT

At t = 0 s the interface that separates the different fluids in the lower layer is removed.
Instantly the first half of the interface between upper and lower layer ranging from 0 to
115 km declines from η1 = −35 m to η1 = −38m during the first 1.5 days. The second
half of the interface between upper and lower layer ranging from 115− 230 km rises up
from η1 = −35 m to η1 = −30 m. The pressure gradient, due to the initial condition
with heavy water columns at the right and lighter at the left, produces a circulation from
heavy to lighter water. Hence the strongest horizontal density gradient is displaced to
the right. As a result of the initial condition of the sharp interface within the lower layer
an internal wave with an amplitude of around 3 m and a surface wave with an amplitude
of 25 mm as shown in Fig. 4.9b are generated. After only a few days of simulation the
surface wave has not more than an amplitude of 2 mm. Due to the retarding effect of
mainly bottom friction these waves are nearly eliminated after 20 days of simulation.
After t = 30 days the simulation has reached a quasi-steady state as shown in Fig. 4.9a
with a sharp gradient for the interface elevation and horizontal density contrast. Thus
this state is balanced by the horizontal density gradient and internal pressure gradient.
Low velocities from u1 = 0.2 m s−1 down to u1 = 0.014 m s−1 after t = 30 days do not
allow any further advective or diffusive processes that could significantly change the
interface elevation or horizontal density contrast.
A realistic result of a comparable simulation would not produce such a sharp gradient
for the interface elevation and horizontal density distribution as stratification processes
are not sufficiently resolved with this two layer model. A water column of the lower
layer water of lighter water is for example directly mixed into a dense water column
and not, as it is physically, expected flowing above the heavier fluid.

4.1.6 Application to Baltic Slice scenario

Within this section the model is being prepared for the so-called Baltic Slice scenario.
This scenario represents a slice through the western Baltic Sea with corresponding
basins, sills and channels as already shown in Fig. 1.3. This is also a very idealized but
more practical test case as the previous ones where already some investigations about
the Arkona inflow event can be done.
To run the model for Baltic Slice scenario some further adaptations should be made.
For sloping bathymetry, the already introduced drying and flooding algorithm (Sect.
3.6.1) has to be inserted. With this algorithm it is guaranteed that the sea surface does
not sink below the sea bed (Section 3.6.1). Additionally bottom friction is inserted
under assumption of the logarithmic law at the bottom while previous chapter have
used the constant value of 0.0025 for the bottom drag coefficient.
Some experiments with the Baltic slice bathymetry are shown in Fig. 4.10, Fig. 4.11
and Fig. 4.12. Fig. 4.10 demonstrates the different velocity of propagation under
variation of the density contrast between the upper and the lower layer. The reason
for this is the dependency on the reduced gravity parameter in the term PRESSI in
(2.64) that represents dynamics due to internal pressure gradients:

g
′

= g
̺1 − ̺2

̺0
(4.34)
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Figure 4.9: Plots after lock exchange test case with horizontal density contrast in the lower
layer. (a) Density in lower layer. (b) The quasi-steady state after 30 days of simulation time
for interface elevation and horizontal density distribution. (c) Picture showing the impact of
the flow in the lower layer on the active upper layer.
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where smaller density differences causes decreasing values for the reduced gravity pa-
rameter and hence for the velocity of propagation.
In Fig. 4.11 the surface elevation is shown with the corresponding velocities in Fig.
4.12. The surface elevation after 8.6 days very descriptive shows the influence of the
lower layer on the upper layer. When the plume achieves higher velocities for the first
time at the steep slope into the Arkona Basin, a hydraulic effect suddenly produces
a decrease of surface elevation. Generally the surface elevation is lifted to the eastern
side of the rectangular basin and decreasing to the western side. This makes the water
even flowing back within the upper layer. This can be seen with a plot of the horizontal
velocities u2 after 93 days. But this effect is very small with surface elevations below
half a millimeter and mean horizontal velocities of around −4 cm s−1. The state af-
ter 79 days of simulation represents the surface elevation when the plume has already
reached the Gotland Basin.
The velocities in the simulated plume as demonstrated in Fig. 4.12 are in the range
of: u1 = 0.05...0.34 m s−1 with the expected significant higher velocities at the steep
slopes in the west of each basin. Interesting are the maximum values for the horizontal
velocities in the lower layer. Even at the relatively long and steep inflow into the Got-
land Basin the same maximum values for the horizontal velocity occurs for the lower
layer compared with the inflow into the Arkona and Bornholm Basin. This indicates
the balance between internal pressure gradient and bottom friction.

4.2 Experiments with Entrainment

In this chapter the entrainment assumption (2.62) is being inserted into the model and
consequences to plume dynamics, horizontal and vertical distribution of the bottom
current are shown.

4.2.1 Gravity current on linear slope topography

A basic test experiment with a gravity current on a linear slope topography is shown
within this section. The impact of entrainment and consequences to the plume prop-
erties are demonstrated.
At the left boundary a fixed density contrast of ∆̺ = 15 kg m−3 between gravity cur-
rent and ambient water is given. The interface elevation with η1 = −10 m at the left
boundary is fixed too.
The experiment simulates a gravity current with entrainment switched on and off. With
entrainment and increasing time a head is forming that reaches nearly twice the layer
thickness at the end of the slope (Fig. 4.13a). Jungclaus [1994] has shown that the
thickness of the front of the plume for increasing slope angles reaches nearly four to five
times the value of the following current. The effect of mixing in the head of the plume
is being shown in Fig. 4.13c with plotting the density distribution every 8.3 hours.
The difference between entrainment switched on and off is shown in Fig. 4.13a with
the expected result, that the plume without entrainment is faster (Jungclaus [1994])
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because the entrainment has a retarding effect dur to the entry of mass and momen-
tum from the ambient lighter water. Generally the gravity current is driven by the
downhill-slope force but the acceleration locally differs from the downhill-slope force
due to the pressure gradient behind the head that even slows down the velocity of the
plume. For both experiments with and without entrainment no decrease of velocity has
been observed because of the balance between friction and pressure gradient.
Jungclaus [1994] has shown that for increasing slope angles from values of 0◦ to 1.25◦

the relation between front velocity and time tends to obtain constant slopes as seen in
Fig. 4.14 (see also Britter and Linden [1980]). This means that for increasing slope
angles the pressure gradient force is in balance with the retarding effects of bottom
friction and entrainment. Values of up to 90◦ can not be reproduced with this hydro-
static numerical model. But the work of Britter and Linden [1980] has provided some
noteworthy experiments for bigger slope angles (5◦ − 90◦) as shown in Fig. 4.14. It
is demonstrated that the front velocity of a plume under constant volume flux in the
inflow area is nearly invariant with the variation of the slope angle. An increase of the
slope angle induces a stronger entrainment rate E due to increasing acceleration on the
slope while the entrainment on the other hand slows down the speed of the plume. Ad-
ditionally the head of a plume as shown in Fig. 4.13 moves approximatively with 60%
of the advective velocity of the following current (Britter and Linden [1980]). Thus the
form of the head is mainly driven by the advection of water from behind the head into
the head and the entrainment directly at the front of the plume with transport of mass
and momentum from the comparatively less active lighter ambient water into the plume.

4.2.2 Lock exchange experiment with entrainment

This section covers a simulation of the so-called lock exchange experiment as it has
already been discussed in Sect. 4.1.4 for a lock exchange experiment without entrain-
ment. The simulation consists of a closed rectangular basin with a depth of 20 m and a
length of 64 km. At t = 0 s the interface separating both fluids with a density difference
of 5 kg m−3 is removed and the heavier water is flowing below the lighter water.
A simulation result of the lock exchange experiment with entrainment and the two
layer model is shown in Fig. 4.15b together with the comparable GETM result (Fig.
4.15a). It can be seen very descriptive how different the results of the two layer model
compared to the GETM simulation are. The disadvantage of the two layer model is the
impossibility of a stratification consisting of more than only two layer in the vertical.
Hence there is a strong mixing at the front over each water column representing the
front of the plume. Heavier water from the left is directly advected into a water col-
umn of lighter water and not flowing below the lighter water. Thus the smaller vertical
salinity gradient representing the GETM result is not being reproduced with the two
layer model and mixing due to entrainment occurs mainly in the front of the plume.

57



4.2. EXPERIMENTS WITH ENTRAINMENT

4.2.3 Running Baltic slice scenario with two layer model and GETM

The Baltic slice scenario of chapter 4.1.6 is applied to show differences in the physics
of the two layer model and the General Estuarine Ocean Model GETM (Burchard and

Bolding [2002];Burchard et al. [2004]) for a simulation with entrainment. The GETM
is a three-dimensional free-surface primitive equation model using the Boussinesq and
boundary layer approximations. The model uses general vertical coordinates (see Bur-

chard and Bolding [2002]) with the advantage that, especially for the simulation of
bottom currents like plumes, these can smoothly advect along the bed.
Whereas the two layer model results are obtained with vertically integrated values for
horizontal velocity and salinity within the plume, GETM for example resolves the ver-
tical velocity shear in the bottom current due to the different impact of bottom friction
or interfacial friction in vertical direction. These physical properties are included in the
two layer model equation by in vertically integrated form. Turbulence to be generated
because of denser water flowing above lighter water and contrariwise can also not be
reproduced with the two layer model. A lighter water column in the lower layer is
advected directly into a heavier water column. A consequence of this limitation of the
two layer model is shown with the simulation of the Baltic slice scenario after one year
of simulation (Fig. 4.16). In the Bornholm Basin a strong horizontal density gradient
is observed that ranges from values of S = 12 psu at the left side of the Bornholm
Basin to S = 21 psu at the right border. This horizontal density gradient is balanced
by the pressure gradient force as seen with a steep slope in the values for the interface
elevation η1. This state after one year of simulation can be considered as a quasi-steady
state. The horizontal velocities u1 in the basins are very small with values of about
u1 = 1mm s−1. Thus no further diffusive or advective processes can affect this balance
between horizontal density gradient and pressure gradient.
Due to increasing velocities and small plume thicknesses of the plume flowing over the
sills into the next basin, the impact of entrainment is high. Hence lighter water is being
transported into the next basin. This effect is demonstrated in Fig. 4.16 for the one
year simulation especially for the Bornholm and the Arkona Basin.
A dynamical investigation of the GETM result compared to the two layer model re-
sult is shown in Fig. 4.16b and Fig. 4.16c. It takes twice the time for the two layer
simulated plume to reach the Gotland Basin as for the GETM-simulated plume. A
conclusion would be that the rate of entrainment is not strong enough to lift the in-
terface and makes the plume more easily pass the sills at the entrance of each basin.
On the other hand, additional mixing causes decreasing values for the density contrast
between plume and ambient water and is consequently reducing the velocity of propa-
gation of the plume. The relation between velocity of propagation and density contrast
has already been demonstrated in Fig. 4.10. Nevertheless the entrainment rate E is
modified under multiplication by the factor 2.7 for test purposes. Astonishingly the
same dynamic results for the GETM simulated (Fig. 4.16c) and the two layer model
simulated plume (Fig. 4.16a) are obtained. But as expected, the salinity has not been
improved simultaneously. With less entrainment, each basin is filled slowly with water
and not until the median interface height within the basin reaches the top of the next
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sill, the water is propagating further into the next basin. This tuning of the entrain-
ment equation is made only for test purposes and not used for further simulations due
to the fact that the entrainment formulation has been proved successfully with a set of
experiments and observations.
The bathymetry of the Baltic slice scenario is far from realistic conditions and is only
qualitatively showing the propagation and mixing of the plume trough the western
basins of the Baltic Sea while propagating from basin to basin separated by shallow
sills. The water passing the Bornholm Channel between the Arkona and the Bornholm
Basin does not have such an unrealistic barrier as shown in Fig. 4.16.
The unexpected higher density values in the Bornholm Basin compared to the Arkona
Basin (Fig. 4.16b) are due to the fact that the bottom water in the Bornholm Basin
creates a more stable dense bottom pool compared to the Arkona Basin, as the effect
of the Sill is much stronger than for the Arkona Basin and hence more volume is fixed
in the Bornholm Basin (Kõuts and Omstedt [1993]). This salinity differences have also
been observed in nature because the Bornholm Basin has a sill that the Arkona Basin
does not have. The sill of the Arkona Basin in the Baltic slice scenario is much too
disproportionated. Meanwhile the water in the first basin is delivered with very shallow
water from the plane at the left border that is, while running down the first slope, being
mixed with the ambient water of S = 8 psu from S = 25 psu to S = 12 psu. Meantime
the water in the second basin remains nearly in the same state like it has been at the
beginning because of reduced dynamics and high amounts of heavier water lying in the
Bornholm Basin.
A deeper investigation of the entrainment of the two layer model plume compared with
the GETM simulated plume needs to identify the interface in the GETM result. There-
for the highest salinity gradient in a water column must be identified. The result is
plotted in Fig. 4.16c with black dots for the obtained interface in the GETM simula-
tion. A comparison with Fig. 4.16b shows a very good agreement in interface elevation
and salinity values in the Arkona Basin with mean salinity values of 20 psu for the
GETM result and 21 psu for the two layer model result. The assumption of a two layer
system makes the two layer model results completely different to the GETM result.
The red arrow in Fig. 4.16c shows with the help of the obtained interface how heavier
water is moving below lighter water, a process not being resolved with the two layer
model.
With a 3D bathymetry for an idealized simulation of the inflow event it is demonstrated
in Chapt. 5 that it took about 10 days for the plume to cross the Arkona Basin and
enter the Bornholm Basin. The Baltic Slice scenario predicts less than 4 days for this
propagation. Due to additional pressure gradients in zonal direction the plume and
hence the spreading in two horizontal directions, the Baltic Slice is not comparable
with a simulation under use of a 3D bathymetry.

59



4.3. BASIC TEST EXPERIMENTS WITH 3D MODEL

4.3 Basic test experiments with 3D model

This section covers a set of basic test experiments with the 3D two layer model. All
these experiments are implemented under use of a linear slope topography as shown
in Fig. 4.17. The impact of Entrainment, Bottom Friction and Rotation on plume
dynamics and properties is being demonstrated and discussed.

4.3.1 Propagation of plume with entrainment and without rotation

For the simulation of the intrusion of dense water without entrainment on a slope with
the 3D two layer model a density contrast of 5 kg m−3 and a plume thickness of 100 m
is given at the inflow area. Contour plots of the current velocity, density contrast and
plume thickness are shown in Fig. 4.18.
Due the the additional zonal pressure gradient in zonal direction the plume dispreads
laterally. A head is forming with a significantly higher plume thickness. The mushroom-
shaped front (Fig 4.18)a of the plume is a commonly obtained state for intrusion ex-
periments.
On the basis of the output of this experiment the symmetry of the model equations in
spatial x− and y− direction can be demonstrated with the results of density distribu-
tion, current velocity and plume thickness in Fig. 4.18a-d.
The highest velocity values (Fig. 4.18c-d) are obtained in the inflow area with corre-
sponding highest values for the density contrast (Fig. 4.18). Due to the dependency
of the entrainment rate E with the current velocity (2.52), the entrainment process is
very strong in the inflow region.
The contour lines in Fig. 4.18b are not in correlation with the plume thickness shown
in Fig. 4.18a. This indicates that the head of the plume mainly develops due to the
advection of water mass from behind the plume head (Britter and Linden [1980]) and
less due to the entrainment process.

4.3.2 Variation of bottom friction with rotation and without entrain-

ment

The effect of bottom friction on a dense bottom current driven by Coriolis force and
pressure gradient force is investigated. Therefor the same initial conditions as in the
previous section are applied. The entrainment is not implemented as this test case
wants only to extract the consequences of bottom friction to gravity current dynamics
without having additional interactions and dynamics due to vertical mixing.
While changing the values for the bottom drag coefficient CD, as seen in Fig. 4.19, the
dissipative effect of friction under increasing values for CD is clearly demonstrated. The
more interesting effects for increasing bottom drag coefficients are the main propagation
direction and obtained smaller thickness values at the left lateral boundary of the flow.
The main propagation direction of the plume depends on the impact of the bottom
friction force. The dissipation due to bottom friction reduces the propagation velocity
and hence causing a decrease of the Coriolis force. For a flow along a continental shelf
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the geostrophic balance:

−fv = −
1

̺0

∂p

∂x

fu = −
1

̺0

∂p

∂y

(4.35)

induces a propagation direction along lines of constant depth. In nature the descent of
this current crossing lines of constant depth occurs due to bottom friction. For realistic
values for the density contrast of such bottom currents at continental shelfs Griffiths

[1986] has shown that only very huge slope angles could induce a flow down the slope.
Thus the test case of this section shows that bottom friction can stop a bottom bound-
ary current from attaining geostrophic balance (Smith [1975]). Recapitulating this
means that for small friction the flow is mainly geostrophically driven and for strong
friction the flow sets on down the slope under decreasing velocity of propagation.
Due to the downhill-slope force the isolines for the plume thickness at the right lateral
boundary of the plume in flow direction are very close to each other while the isolines
at the left lateral boundary are diversified.
The impact of the bottom friction force is stronger for smaller plume thicknesses. Thus
different directions for the current velocity close to the bottom are obtained compared
to the upper parts of the plume. This distribution for the horizontal velocity component
can not directly be reproduced with the two layer model. But this physics is included
in vertically integrated form.
It is also noteworthy that the propagation angle of these bottom currents balanced by
pressure gradient, Coriolis force and bottom friction have been used to obtain the bot-
tom drag coefficient (Bowden [1960]). But the qualitative result of these investigations
is problematic concerning the problems measuring the density contrast, propagation
angle and plume thickness not only because of the different gradients of density and
plume thickness at the lateral boundaries.

4.3.3 Conclusions

The basic test experiments have demonstrated that the two layer model resolves the
basic properties of a gravity current. The dense bottom current is being diluted by
the ambient water and is hence reducing the velocity of propagation due to decreasing
values of the density contrast. At the front of the plume a head is forming due to
entrainment. This mixing in the head decreases the velocity in the front and advects
water from behind the head into the head. This has also been demonstrated with the
the 1 1/2 layer reduced gravity model (inactive upper layer) of Jungclaus [1994] and
in the work of Britter and Linden [1980]. For a gravity current in a rotating frame the
is balanced between pressure gradient force, Coriolis force and bottom friction force.
Increasing influence of the bottom friction force drives the plume down the slope across
contours of constant depth.
It is noteworthy that some experiments have shown a significant impact of the bottom
current on the upper layer and contrariwise (Fig. 4.5; Fig. 4.11; Fig. 4.12). The
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obtained values for the velocities in the upper layer during the Baltic Slice scenario
(Fig. 4.12) have shown that even for a relation of h2/h1 = 2.5 between the thicknesses
of the upper and the lower layer in the Bornholm Basin the interaction between both
layers is not negligible. The Arkona Basin, where the interaction is even stronger due
to maximum depth values of only 48 m (max. depth in Bornholm basin: 92 m), is
the basis for closer investigations of inflow events within this thesis (Chapt. 5). Thus
the application of a two layer model with two active layers might be forceful necessary.
The use of a 1 1/2 layer model with an inactive upper layer as applied for the Denmark
Strait Overflow (Jungclaus [1994]), where the ratio between the thickness of the lower
and upper layer is small and interaction can be neglected, is not suited to simulate
inflow events in the Baltic Sea (mean depth: 52 m) and observed plume thicknesses
between 5 and 15 m (Lass and Mohrholz [2003];Burchard et al. [2005]) for the plume
in the Arkona Basin.
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Figure 4.10: Plume after 146 days of simulation under variation of the density contrast between
upper and lower layer.

Figure 4.11: Sketch showing the elevation of the surface during the Baltic Slice scenario.
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Figure 4.12: In this pattern the velocities of both layers after a simulation time of 93 days
are shown. Significantly higher velocities at every steep point of the bottom topography can be
seen. For illustration there are some basins given in the sketch. Also the interaction between
upper and lower layer is well demonstrated for the area of the Arkona Basin.
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Figure 4.13: Gravity current on a slope with the latest state after t = 2.4d. (a) Sketch
showing the plume with and without entrainment. (b) With entrainment: Formation of a head
that increases with time (used time interval for plot: ∆t = 8.3 h). (c) Time series of densities
for simulation with entrainment. The mixing process directly at the front of the plume, where
densities close to the density values of the ambient water can be found, is shown. Interesting is
the nearly linear increase of density from ̺ = 1006kg m−3 up to ̺ = 1014kg m−3.
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Figure 4.14: Front position of a plume under different slope angles plotted over time. Picture
taken from Jungclaus [1994].

Figure 4.15: Lock exchange experiment with GETM (upper panel; picture taken from Bur-

chard and Bolding [2002]) and the two layer model (lower panel) for a density contrast of
5 kg m−3 at t = 0 s.
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Figure 4.16: (a) Baltic slice scenario after 44.2 days of simulation with the two layer model
under modification of the implemented entrainment formulation. (b) Baltic slice scenario after
22.6 days of simulation with the two layer model. (c) Baltic slice scenario after 22.6 days of
simulation with GETM together with obtained interface (black dots). (d) Quasi-steady state
after one year of simulation with the two layer model. Additionally the horizonal velocity in
the plume is plotted.
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Figure 4.17: Linear slope topography for basic model experiments with 3D two layer model.
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Figure 4.18: Picture showing the propagation of a bottom current after 4 days of simulation
time. (a) Plume height; (b) Density contrast between upper and lower layer; (c) Vectors of
current speed and (d) Current speed in lower layer.
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Figure 4.19: Interface elevation of plume on linear slope topography with rotation under
variation of the bottom drag coefficient with values of: (a) CD = 0.001, (b) CD = 0.005, (c)
CD = 0.01 and (d) CD = 0.05.
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Chapter 5

Simulation of Baltic Sea inflow

event

The reduced gravity and Boussinesq-approximated 3D two layer model is now applied
to simulate an idealized Baltic Sea inflow event. The importance of plumes for the
ecosystem Baltic Sea has been discussed in Chapt. 1. Hence various investigations of
inflow events exist with the help of measurements (Lass and Mohrholz [2003];Burchard

et al. [2005];Kõuts and Omstedt [1993];Matthäus and Franck [1992];Liljebladh and Stige-

brandt [1996]) and theoretical considerations (Burchard et al. [2005];Kõuts and Omstedt

[1993]). These are compared with two layer model results to demonstrate accordances
and nonconformities.
Additionally some experiments under variation of model parameters like Froude num-
ber (2.54) and bottom roughness length z0 are demonstrated to point out the sensitivity
of the model results on these model parameters. Furthermore two different assumptions
for the calculation of the bottom drag coefficient are compared.

5.1 Model setup and initial conditions

The bathymetry now used for the simulation of the Baltic Sea inflow event is shown in
Fig. 5.1a. The model domain covers a range of around 315x165 km from 11.0◦ − 16.0◦

East and 54.0◦ − 55.8◦ North. This model domain has a resolution of 0.5x0.5 nm
(nautical miles) and is applied to obtain two layer model results that can be compared
directly with the recent work of Burchard et al. [2005]. Observations together with
model simulations for this bathymetry have been demonstrated and discussed there.
Later on the bathymetry is extended to a bathymetry ranging from 9.0◦ − 15.0◦ East
and from 53.5◦ − 56.5◦ North as shown in Fig. 5.1b. A resolution of 0.5x0.5 nm is used
for discretizing the model equations. This bathymetry is additionally applied to obtain
model results that also identify plumes crossing the Danish Belts. These are excluded
during simulations with the smaller bathymetry as shown in Fig. 5.1a.
The initial condition for the simulation of the Arkona inflow event is a constant inter-
face elevation with η1 = −Dmin = −0.02 m (see Sect. 3.6.3) at the northern model
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5.1. MODEL SETUP AND INITIAL CONDITIONS

Figure 5.1: (a) Bathymetric maps of the Arkona Sea with the two cross sections south of
Drodgen Sill and across Kriegers Shoal indicated by the two green lines. These slices are part
of a model comparison in Sect. 5.2 of the two layer and the GETM (Burchard and Bolding

[2002]). The purple and red lines show the tracks for the observational sections (purple line: Feb
1 from 16:20 to 20:41 h; western red line: Feb 2 from 10:24 to 14:47 h; eastern red line: Feb 5
from 10:45 to 15:31 h). Picture taken from Burchard et al. [2005]. (b) Extended bathymetry for
model simulations that additionally resolves the plume crossing the Great Belt and Fehmarn
Belt and finally the Darss Sill into the Arkona Basin. The crosses mark the hydrographic
stations Møn and Bornholm.
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domain boundary in the Oeresound. It simulates an inflow event with a fresh water
inflow of 25 psu. The rest of the domain is filled with water of 8 psu which is a realistic
assumption for the brackish surface water of the Arkona Sea (Liljebladh and Stigebrandt

[1996]; Burchard et al. [2005]).

5.2 Comparison of two layer model results to GETM

Based on the work of Burchard et al. [2005] direct comparisons between the GETM
(Burchard and Bolding [2002];Burchard et al. [2004]) and the two layer model for cross
sections of the plume are made for a region south of Drodgen Sill at 12◦30′E and a
north-south transect across Kriegers Shoal at 13◦E. On this note, differences in plume
velocity, salinity and thickness are pointed out and reasons for different model results
are discussed.
For a direct comparison of the two layer model results with model results from a differ-
ent ocean model, the idealized Arkona inflow event is additionally simulated with the
GETM (Burchard and Bolding [2002]). The GETM is a three-dimensional free-surface
primitive equation model using the Boussinesq and boundary layer approximations.
The model uses general vertical coordinates (Burchard and Bolding [2002]). The ad-
vantage is a more smoothly advection of saline bottom currents moving along the bed.
Furthermore the GETM model results are interesting, because they additionally deliver
informations about velocity shear and stratification within the plume. On the other
hand the GETM resolves the sharp salinity gradients in the interface not as observed,
as it can be seen in 1.4. The two layer model reproduces the sharp gradient more
sufficiently.
The idealized simulations have been compared with recent observations investigated in
January and February 2004 in the work of Burchard et al. [2005]. Additionally the two
layer model is applied to confirm with or even enlarge the results at hand. For the
discretisation of the Arkona inflow event, a high-resolution bathymetry with 0.5 nm
(nautical miles) is used for the GETM as well as for the two layer model. The GETM
setup has been implemented under disregard of surface and boundary heat fluxes. A
vertical resolution of 25 layers has been applied. Bottom- and surface-fitted coordinates
(Burchard and Bolding [2002]) are used and the bottom layer thickness is horizontally
homogeneous with a value of 0.4 m. As it has already been mentioned this allows a
good resolution of plumes on slopes.
Open boundaries can be found at the northern end of the Sound, towards the West
across the Fehmarn Belt and towards the East along 14◦46′E.
The model forcing for the idealized simulation with GETM is nearly the same as for
the two layer model. At the North of the Oeresound towards the Kattegat the surface
elevation is slightly increased by 0.02 m whereas the surface elevation at the other open
boundaries is set to zero-level. The whole domain is filled with water of 8 psu whilst the
inflowing water in the North of the Sound has a salinity of 25 psu. The only difference
between the model forcing of both the GETM and the two layer model is, that for
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5.2. COMPARISON OF TWO LAYER MODEL RESULTS TO GETM

the GETM a spatially and temporally homogeneous wind stress of 0.22 N m−2 from
south-west (240◦) is assumed. For the two layer model no wind stress is applied to the
model equations. This feature was not included at this state of the two layer model.
Further investigations about the influence of surface stress τs on the two layer system
have to be done.

5.2.1 Modeling the Arkona inflow event

Figure 5.2: (a) Time series of flowrates north and south of Kriegers Shoal for the plume from
Drodgen Sill (a) without and (b) with involvement of the bottom current crossing Drodgen Sill.

Within the first five days of simulation (Fig. 5.3), the plume has already passed the
Drodgen Sill and filled the Sound with high-salinity water of 22 − 25 psu. The lateral
boundaries of both modeled plumes are very similar to each other with some less sig-
nificant salinity differences in the region of the Drodgen Sill.
After 15 days of simulation a merging and splitting process of the bottom current oc-
curred due to Kriegers Shoal. Kriegers Shoal itself is fully surrounded by saline bottom
water of 12 psu (GETM: 15 psu) in the south and 18 psu (GETM: 22) psu in the north.
There seems to be a big difference, but as Fig. 1.4 proves, the interspace of both GETM
and two layer model graph to the observations is nearly equal. As it can be seen further
on with the help of the contour lines, the geographical region of the merging process of
the northern and southern branch takes place in the south-east of Kriegers Shoal.
At the same time significant differences in the salinity values of both model solutions are
apparent. The Drodgen Sill seems to be a comparatively bigger barrier for the two layer
simulated bottom current. A weaker plume thickness on top of Drodgen Sill induces
stronger entrainment rates, which might be an explanation. Moreover the horizontal
salinity gradient at the front and lateral boundaries of the plume is much higher for the
GETM-simulated plume. Nevertheless both model solutions are still in agreement with
respect to the velocity of propagation and lateral broadening of the plume. An inspec-
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5.2.1 MODELING THE ARKONA INFLOW EVENT

tion of the salinity of the northern compared to the southern branch around Kriegers
Shoal shows, that most of the flow propagates north of Kriegers Shoal. This flow regime
is unexpected, because a mainly geostrophic propagation of the plume would result in
a current with a stronger southern branch. Due to the narrow channel west of Kriegers
Shoal the flow in the southern branch is hydraulically limited. Referring to this, the
GETM-simulated flow and the two layer simulated flow are in agreement. For a direct
comparison of the transports north and south of Kriegers Flak see Fig. 5.2a.
Fig. 5.2a and 5.2b demonstrate the difference in flowrates for the northern and southern
branch of Kriegers Shoal simulated with the two different bathymetries (see Sect. 5.1).
Fig. 5.2b additionally resolves the flow over the Danish Belts that finally has to pass
the Darss Sill to fill the Arkona Basin with saline water. After 65 days of simulation
with the extended bathymetry a suddenly increased flowrate for the southern branch
south of Kriegers Shoal (Fig. 5.2b) occurs. It is noteworthy that the northern branch
is not affected. The difference in flowrates for the northern branch with 8000 m3 s−1

in Fig. 5.2a and 5000 m3 s−1 in Fig. 5.2b is due to the different plume thicknesses at
Drodgen Sill. The initial condition for the simulation with the smaller bathymetry has
a fixed interface elevation in the north of the Oeresound. This interface elevation is not
reached for the simulation under use of the extended bathymetry (Fig. 5.1) in quasi-
steady state. Consequently the flow rates for the bottom current crossing the Drodgen
Sill are smaller. The ratio of the flowrate between the northern and southern branch
has a relation of 6.75 : 1 for the process of saline water coming from the Oeresund. The
result with the additional plume from the Darss Sill, that joins the flow southern of
Kriegers Shoal, turns over the ratio to the relation of 1 : 6.
It is noteworthy that the GETM-simulated plume advects more along the Danish coast
(see yellow arrow in Fig. 5.3). The reason might be that the GETM-simulated plume
is comparatively more geostrophically driven with less influence of bottom friction.
The velocities within the plume after 17 days are plotted in Fig. 5.5. Fig. 5.5 demon-
strates that the lateral broadening in the east of Kriegers Shoal slows down the plume
in the Arkona Basin with mean velocities of 6 cm s−1. At steep slopes, mainly to be
found between Drodgen Sill and Kriegers Shoal, velocities of up to 0.35 m s−1 occur.
Peak values for the velocities northern of Kriegers Shoal are nearly three times bigger
than in the south.
After 30 days of simulation the plume covers most of the Arkona Sea and has already
passed the Bornholm Channel. The state can be considered as a quasi-steady state (Fig.
5.4) as the lateral boundaries, transports and plume thicknesses (Fig. 5.4) have reached
their maximum values. The state is now balanced by topographic (hydraulic limiting)
features, the entrainment process, bottom friction, Coriolis force and pressure gradient.
Both model solutions remain in agreement concerning lateral boundaries and velocity
of propagation. Despite these similarities, the entrainment process is significantly dif-
ferent between both model solutions. Due to the fact that the GETM result represents
the bottom salinity and the two layer model output represents the vertically averaged
salinity, higher values of salinity for the GETM simulation are comprehendible. Hence
relative differences between salinity values of the different plumes could give a more
proper conclusion of the differences in the mixing processes. With arbitrarily cho-
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sen points in the west of Kriegers Flak and close to the Bornholm Channel a salinity
difference of 6 psu is obtained for the two layer model result and 5 psu for the GETM-
simulated plume. Further investigations of the GETM result have to be done under
calculation of vertically integrated values for salinity, velocity and plume thickness. A
direct comparison of the bottom salinity of the GETM model result with the vertically
averaged variables of the two layer model result is complicated. The velocities close
to the sea bed within the plume are influenced by bottom friction. Ekman physics is
included in the two layer model equations only in a vertically integrated form. Addi-
tionally, different assumptions for the entrainment rate E (see Bo Pedersen [1980a];
Oguz et al. [1990]; Baringer and Price [1990]) have to be tested with the model.
Another striking point of the model result is the flow around Kriegers Shoal with a
depth of partially less than 20 m surrounded by water depths of more than 40 m. Over
the whole simulation, the salinity on top of Kriegers Flak remains constant with val-
ues of 8 psu. These water masses are consequently not influenced by the plume when
considering these idealized model simulations. Even the additional flow over the Darss
Sill does not affect the water masses on top of Kriegers Shoal (Fig. 5.16).
Lass and Mohrholz [2003] assumed that for a mainly geostrophic propagation the plume
propagates south of Drodgen Sill along the Danish coast and west of Kriegers Flak in
order to propagate along the southern boundary of the Arkona Basin over the Born-
holmgatt into the Bornholm Basin. As it has already been considered by Burchard

et al. [2005] the flow must be assumed to be also significantly influenced by bottom
friction. This conclusion is clearly confirmed by idealized two layer model experiments
(Sect. 4.3). A significant impact of bottom friction will force the plume to cross lines
of constant depth with a resulting flow down the slope.
As it was suggested in Burchard et al. [2005], the stationary model forcing may be to
far from realistic conditions. In the following sections two slices south of Drodgen Sill
and across Kriegers Flak are investigated for a direct comparison to observations.

5.2.2 Velocities of bottom track of the plume

Due to the main forces, as there are bottom friction, Coriolis force and pressure gradient
force, the bottom current follows a specific track (Fig. 5.6) from south of the Drodgen
Sill crossing the Arkona Basin up to the Bornholm Channel. With the help of the
idealized Arkona inflow event simulation the main track of the plume is obtained by
identifying the highest salinity values in the propagation direction. Hence the specific
bottom track is obtained and shown in Fig. 5.6.
Fig. 5.7(a) shows a Hovmueller diagram of salinity plotted over time and distance
during a realistic simulation implemented by Janssen et al. [2006]. A specific velocity
of propagation (Fig. 5.7(b)) can be found for different intensive inflow events. As
shown in Fig. 5.7(c) this is also reproduced quite well by the two layer model for the
idealized inflow event simulation.
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5.2.2 VELOCITIES OF BOTTOM TRACK OF THE PLUME

Figure 5.3: GETM-simulated near-bed salt distribution (left panels) and plume salinity simu-
lated with the two layer model (right panels). Note the good agreement of both model solutions
seen in comparison of the lateral boundaries of the plume.
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Figure 5.4: Simulated plume thickness at arbitrarily chosen points near Drodgen Sill, Kriegers
Flak and the Arkona Basin to show that a quasi steady state occurs after about 30 days of
simulation.

Figure 5.5: Current velocities of plume after 28 days of simulation. The framed area symbolizes
the extracted region for further investigations of plume dynamics at around Kriegers Shoal in
Sect. 5.3.1
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5.2.3 COMPARE DIFFERENT BOTTOM DRAG ASSUMPTIONS

Figure 5.6: Picture showing the track of obtained maximum values for salinity of the plume
during the Arkona inflow event.

5.2.3 Compare different bottom drag assumptions

The assumption of a logarithmic law at the bottom and the resulting dynamic calcula-
tion of the bottom drag coefficient 2.46 is now compared to a simulation under use of
a constant bottom drag coefficient with CD = 0.0025. The results of both model simu-
lations are shown in Fig. 5.8 with the differences between both simulations being only
marginal. As shown in Fig. 2.2, values of around CD = 0.0025 are obtained for plume
thicknesses of 5 m. This is a mean value for the plume thickness modeled with the two
layer model. Hence the mean value for the bottom drag coefficients is very similar to
CD = 0.0025. Calculations of differences in salinity, plume thickness and flowrates have
shown only small differences. Maximum salinity differences between both assumptions
of only 0.4 psu occurred. Differences in values for the plume thickness were below 0.6
m.

Additionally the bottom roughness length has been changed from z0 = 0.001 m to
z0 = 0.01 m. An inspection of Fig. 2.2 shows that for the same values of the plume
thickness, the bottom drag coefficient is nearly doubled for a bottom roughness length
of 1 cm. A simulation result has shown differences of more than 20% for the velocity of
propagation between z0 = 0.1 cm and z0 = 1 cm. A consequence would be, that the two
layer model results could be more realistic when applying different bottom roughness
lengths within the model domain.
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Figure 5.7: (a) Hovmueller plot for Arkona inflow events with different intensities during a
realistic simulation (Janssen et al. [2006]). (b) With the slope shown in (a), the velocities for
the salinity along track are obtained. (c) Hovmueller plot with velocity at the main bottom
track plotted over time. Picture (a) and (b) were taken from Janssen et al. [2006].
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5.2.4 VARIATION OF FROUDE NUMBER

Figure 5.8: Simulation of the Arkona inflow event with different assumptions of the bottom
drag coefficient. Left panel: CD calculated under the assumption of a logarithmic velocity
profile (2.46) and right panel: CD = 0.002.

5.2.4 Variation of Froude number

A time series of the Froude number, required for the calculation of the entrainment
rate E (Sect. 2.2.5), has shown that very unrealistic values of up to Fr = 140 were
obtained at the front of the plume. This provides clear evidence that the implemented
drying and flooding algorithm (Sect. 3.6.1) causes problems directly at the front of
the plume where ’dry’ grid boxes (h1 = Dmin) are instantly flooded. The motivation
of this section is to find an appropriate maximum value for the Froude number. It is
questionable, if the implemented entrainment formulation is guilty for Froude numbers
above unity. Thus the value of Fr = 1 has been chosen for all model simulations. To
demonstrate the dependency of the model results on a variation of the Froude number,
two different simulations with a Froude number of Fr = 0.7 and Fr = 1 are compared
(Fig. 5.9).
The differences shown in Fig. 5.9 are significant with a disagreement in both model
results of one day. Increasing Froude numbers are connected to the Entrainment rate
E with the following relation:

E ∼ Fr2.77, (5.1)

that consequently induces a stronger mixing with ambient water. Thus the decreasing
density contrast implicates a reduced velocity of propagation (see also Fig. 4.10).

5.2.5 Cross section of plume south of Drodgen Sill

The observational data from Feb 1 and Feb 2 in 2004 with a north-south transect south
of Drodgen Sill (Fig. 5.1) is now compared with the idealized simulation of the Arkona
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Figure 5.9: Propagation of plume after 14.74 and 15.74 days for Froude numbers of Fr = 0.7
(left panel) and Fr = 1 (right panel).

inflow event (Sect. 5.2.1). For the comparison with observations (Fig. 5.11) with the
model results of the two layer model (Fig. 5.10) and GETM (Fig. 5.12) the eastern
green line in Fig. 5.1 indicates the north-south transect used for the output of model
data. With the help of the slices informations about salinity, eastward and northward
velocity and plume thickness are obtained.
The observed data (Fig 5.11) shows salinities above 20 psu during the inflow event on
Feb. 1 in 2004 that are reproduced by the two layer model result (Fig. 5.10) as well as
by the GETM simulation (5.12). With southward velocities of up to 0.35 m s−1 for the
two layer model result and maximum values of 0.35 m s−1 for the GETM result, both
idealized simulations do not represent the observed southward velocities of 0.5 m s−1

over a broad band of the plume. The observed plume might be additionally driven
by a barotrophic component over Drodgen Sill. Due to the stationary model forcing
this is not resolved. Furthermore the observed peak fluxes of about 60, 000 m3 s−1 and
quasi-steady state fluxes of 5, 500 m3 s−1 (5.20) for the two layer model simulation and
26, 000 m3 s−1 for the GETM result (Burchard et al. [2005]) are not resolved. The
direct comparison of both idealized model solutions corresponds well in velocity values
of around 0.3 m s−1 eastward velocity at 55.45◦N or 0.3−0.4 m s−1 for the geographical
position 55.1◦N to 55.3◦N.

5.2.6 Cross section of plume across Kriegers Shoal

The second observed dataset for a north-south transect across Kriegers Shoal is shown
in Fig. 5.14. The obtained two layer model results for the eastern green line in Fig.
5.1 are presented in Fig. 5.13 and respectively for the GETM result in Fig. 5.15.
Fig. 5.13 shows the northern and southern channel of Kriegers Flak with the cor-
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5.2.6 CROSS SECTION OF PLUME ACROSS KRIEGERS SHOAL

Figure 5.10: Simulated salinity and current velocity after 8 and 9 days with the two layer
model on a north-south transect at 12◦30′E south of Drodgen Sill.
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Figure 5.11: Observed salinity and current velocity on a north-south transect south from
Drodgen Sill. Left panel: Feb 1 2004 from 16:20 to 20:41 h and right panel: Feb 2 from 10:24
to 14:47 h. The red lines in the upper two panels demonstrates the positions of the CTD
(Conductivity, Temperature and Density) profiles. Picture taken from Burchard et al. [2005].
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Figure 5.12: GETM-simulated salinity and current velocity after 8 and 9 days on a north-south
transect at 12◦30′E south of Drodgen Sill. Picture taken from Burchard et al. [2005].
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responding branches at 35 m depth in the north and up to 40 m in the south. In
both idealized simulations the northern and southern branch of the plume are not con-
nected. As a consequence the additional mixing of dense water due to offshore wind
farms planned to be built down to a depth of 25 m (Capt. 1) might only slightly
increase. The two layer model basically reproduces the measurements from Feb 5 in
2004 (Burchard et al. [2005]) over Kriegers Flak with 17 psu (GETM: 21 psu) in the
northern channel and 14 psu (GETM: 18 psu) in the southern channel. Water column
measurements (diamond in Fig. 5.1a) as shown in Fig. 1.4 show the observed very
sharp salinity gradients at the interface. The two layer model result is in good agree-
ment with the salinity values but does not represent the measured plume thickness.
It must be considered that the two layer model result does only represent vertically av-
eraged values for salinity and horizontal velocity component. Hence peak values for the
horizontal velocity component, as they are obtained by the GETM result for northward
and eastward velocity in the halocline (Fig. 5.15), that separates the plume from the
ambient water, are not obtained. When considering mean values for a water column of
the plume, the eastward velocity component of the two layer model simulated plume
with up to 0.26 m s−1 represents the observations and the GETM result. For the north-
ern branch the halocline is sloping down towards the north (Fig. 5.14). A result that is
also obtained by both model simulations. Due to the geostrophic balance, the balance
between Coriolis and pressure gradient force, the same applies for the southern branch
of the plume. A major difference between the observations and the two layer model
result is a very low southward velocity component with around 0.03 m s−1 whereas the
observations show maximum values of 0.2 m s−1. Although this can be justified by
the vertically averaged values of the two layer model, it cannot describe different flow
structures in vertical direction. Thus for example a bottom layer influenced by bottom
friction cannot directly be shown by model results.

5.3 Baltic Sea inflow event with extended bathymetry

At the end of this thesis the bathymetry for the inflow event is spatially extended to
the bathymetry used for the QuantAS-off project (Chapt. 1). The applied bathymetry
(Fig. 5.1b) was kindly provided by Frank Janssen (BSH).
Simulations with this bathymetry might deliver improved results due to the fact that
the plume crossing the Darss Sill is additionally resolved. As already shown in Fig. 5.2
the Darss Sill bottom current significantly changes the properties of the plume around
Kriegers Shoal.
As it is obtained by the model results, the bottom current in the Arkona Sea signifi-
cantly depends on the plume entering the Arkona Sea over the Darss Sill. The forcing
of the model simulation is similar to Sect. 5.2 with a slightly increased surface elevation
of 0.02m in the Kattegat and a surface level of 0 m at the other open boundaries. The
salinity of inflowing water in the Kattegat is 25 psu. Furthermore the ambient brackish
water has a salinity of 8 psu. The model domain consists of an open boundary in the
east (Fig. 5.16).
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Figure 5.13: Simulated salinity and current velocity with the two layer model in quasi steady
state on a north-south transect at 13◦E across Kriegers Shoal.
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Figure 5.14: Observed salinity and current velocity on a north-south transect across Kriegers
Shoal. With the help of CTD profiles and ADCP (Acoustic Doppler Current Profiler) mea-
surements these observations were taken on Feb 5 from 10:45 to 15:31 h. The red lines in the
upper panel shows the positions of the CTD (Conductivity, Temperature and Density) profiles.
Picture taken from Burchard et al. [2005]
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Figure 5.15: GETM-simulated salinity and current velocity in quasi steady state on a north-
south transect at 12◦30′E south of Drodgen Sill. Picture taken from Burchard et al. [2005]
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Figure 5.16: Idealized inflow event simulation with two layer model (upper left panel, plume
salinity) and GETM (upper right panel, bottom salinity) after 60 days and respectively after
142 days (lower panels). Upper right and lower right panel taken from Janssen et al. [2006].
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Astonishingly the plume crossing the Great Belt and the Fehmarn Belt reaching the
Darss Sill after 60 days corresponds with only a difference of around one day for both
the two layer simulated and the GETM simulated plume (Fig. 5.16). This may lead to
the assumption that the plume can very well be assumed by gravity current dynamics
and the main processes as there are Coriolis force, baroclinic and barotrophic pressure
gradients and the entrainment rate as a local process that only depends on the state of
a single water column. The distribution of salinity with around 21 psu at the Fehmarn
Belt for the GETM as well as for the two layer model result is similar. A time-series
of salinities is shown in Fig. 5.18. It is obvious that the mixing process from Drodgen
Sill and Darss Sill on is very strong with salinities in the range of 23.5 − 25 psu in the
Danish Belts and the Oeresound and values of only 13.5 − 17.5 psu in the Arkona Sea.
South of Kriegers Shoal an area of low salinity values is obtained (Fig. 5.16). Both the
two layer model simulation and the GETM simulation represent this state. The occu-
rance of this area with density differences of up to 4 psu compared to the surrounding
water masses is not only represented by idealized model simulations. Realistic simula-
tions with GETM over a period of half a year have shown this effect, too (Janssen et al.

[2006]). The bottom current is topographically stirred by the bathymetry forming two
channels surrounding the low saline area.
The obtained flowrates during the inflow event are shown in Fig. 5.20. The ratio be-
tween the flowrate in the Great Belt and the Oeresound is 7.5 : 1. The flowrate through
the Oeresound would have been expected as bigger. Observations that can be compared
with this model result are difficult to obtain. The reason for the big flowrate at the
Great Belt can be demonstrated with the model result as shown in Fig. 5.16. The
plume crossing the Drodgen Sill with a depth of only 8 m is significantly slower than
the GETM-simulated plume crossing Drodgen Sill. Closer investigations of the two
layer model results for the dynamics at Drodgen Sill have shown, that it took nearly 7
days for the plume to cross Drodgen Sill. Thus only a little amounts of dense bottom
water are crossing Drodgen Sill. Due to small plume thickness values at Drodgen Sill
the vertical mixing is very effective and rapidly changing the salinity distribution of the
plume as seen in Fig. 5.16. A run of the two layer model with more correct flowrates
for the ratio between the Great Belt and the Oeresound requires the bathymetry to be
modified especially at Drodgen Sill.
The calculated flowrate of 58, 000 m3 s−1 for the quasi-steady state of the model simu-
lation in the Bornholm Channel is in agreement with the calculated flowrates of Kõuts

and Omstedt [1993] demonstrated in Fig. 5.21. A calculated time series of flowrates
for positions in the Arkona Basin Fig. 5.20) and the flowrate in the quasi-steady state
(Fig. 5.19) demonstrates that the flowrate increases to 87% from western of Kriegers
Shoal up to the Bornholm Channel. Kõuts and Omstedt [1993] obtained a calculated
flowrate of only 53% for the Arkona Basin.
Stigebrandt [1987] has shown that the plume crossing the Bornholm Channel has a
mean salinity of 13.59 psu with a range between 12 and 16 psu. These values are in
good accordance to the two layer model results shown in Fig. 5.21d and Fig. 5.18b.
Time series of measured salinities at the hydrographic stations Møn and Bornholm
from Oct 10 1998 to Jan 8 1999 (Fig. 5.17a) Lass and Mohrholz [2003] have shown
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that the delay between both stations is 12 days with salinity differences of 1.41 to 1.47
psu for the peak values of the corresponding events. The salinity values obtained by
the idealized two layer model simulation predicts a different picture as demonstrated
in Fig. 5.17a and 5.17b for the quasi-steady state. The simulated density difference
between both stations is completely different to the obtained values with higher salin-
ity values for station Bornholm than for station Møn with a density difference of 1.2
psu. The reason might be that the simulation result additionally represents the strong
bottom current crossing the Darss Sill with higher salinity values. The station Møn is
not influenced by this bottom current and only reflects the bottom current that has
crossed the Drodgen Sill with smaller salinity values. Moreover the simulated delay
between both stations is different from the observations. With a delay of 22 days the
simulated bottom current is nearly 10 days slower than the observed bottom current.
An inspection shows that the observed peak values for the salinity of around 22 psu
(Fig. 5.17a) are higher than the simulated salinities for the quasi-steady state (Fig.
5.17a) with a peak value for the Bornholm station of only 15.5 psu. Thus the velocity
of propagation of the simulated plume is less than observed due to smaller values for the
density contrast west of Kriegers Shoal. Even in the south of Kriegers Shoal, where the
merging process of the bottom current crossing the Darss Sill and the bottom current
from Drodgen Sill takes place, the simulated peak salinity value in quasi-steady state
of 17.5 psu is much smaller than the observed peak values for the salinities of 22.5 psu
at station Møn and 21 psu at station Bornholm. A deeper investigation of the model
results indicate that the geographical regions of the Darss Sill and the Drodgen Sill play
a very important role for the dilution of the bottom current. This has also been shown
by investigation of the corresponding transport rates in the Arkona Basin (Fig. 5.19).
The strong decrease in salinity values can be seen with the help of the obtained salinity
values after 60 and 142 days in Fig. 5.16 as well as with a plotted time series of plume
salinities in Fig. 5.18. The salinity values for positions in the Great Belt, Fehmarn
Belt, Drodgen Sill and Darss Sill are much higher than the salinities obtained for the
bottom current that has already passed the Drodgen Sill and the Darss Sill (Fig. 5.18b).

5.3.1 Splitting and merging around Kriegers Shoal

Additional information about the splitting and merging process due to Kriegers Shoal in
the area shown in Fig. 5.5 is obtained in this section. Fig. 5.22 represents the simulation
results obtained by the idealized simulation with the smaller bathymetry (Fig. 5.1a)
whereas Fig. 5.23 represents the model results while applying the bathymetry shown
in Fig. 5.1b.
With depth values of less than 20 m Kriegers shoal is forming a barrier for the plume.
Hence the bottom current is splitted in the west (Fig. 5.22) with the consequence of
a northern and a southern branch. Fig. 5.22 is demonstrating what previous sections
and investigations (Burchard et al. [2005]) have already shown. The main transport
of saline bottom water occurs north of Kriegers Shoal with velocities up to 0.35 m s−1

and 0.22 m s−1 in the south. A time series of current velocity vectors (Fig. 5.22) points
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Figure 5.17: Observed (left panel) and two layer simulated (right panel) salinities at the
hydrographic stations Møn and Bornholm. Left picture taken from Lass and Mohrholz [2003].

Figure 5.18: Time-series of simulated salinities at different regions in the western Baltic Sea.
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Figure 5.19: Picture showing the simulated flowrates for the quasi-steady state of the two
layer model simulation for different slices through the western Baltic Sea.

out that the plume is splitted after 8.5 days and merged again three days later. South-
east of Kriegers Shoal, where both branches join each other to flow into the Arkona
Basin, two eddies, a cyclonal and an anti-cyclonal one, are forming. They remain stable
over the simulated period of 30 days with a diameter of around 10 km. The current
velocities in the eddies are weak with values below 7 cm s−1 (Fig. 5.22f). The mean
plume thickness for the investigated area is in the range of 5 − 6 m (Fig. 5.22e). The
obtained values for the current velocity in the Arkona Basin are between 7 cm s−1 and
8 cm s−1.
A completely different flow structure and plume distribution occurs when additionally
the bottom current crossing the Darss Sill comes into account (Fig 5.23). The bottom
current crossing the Darss Sill joins the southern branch of the bottom current south
of Kriegers Shoal. Thus the directions of the current velocity east of Kriegers Shoal
are significantly influenced. Peak values of 15 cm s−1 occur in the Arkona Basin. The
current velocities south of Kriegers Flak increased from 0.18 m s−1 to 0.33 m s−1 for
the bottom current under consideration of the plume crossing the Darss Sill. The plume
thicknesses now reach values between 10 and 15 m in the Arkona Basin.
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Figure 5.20: Upper panel: Water mass fluxes at the Sound (2800m3s−1) and the Great Belt
(19000m3s−1) for the quasi steady state during the idealized inflow event with the two layer
model. Lower panel: Water mass fluxes at different positions during the idealized inflow event.
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Figure 5.21: (a) Calculated salinity distribution for the geostrophic outflow rates in the Born-
holm Channel. Picture taken from Kõuts and Omstedt [1993]. (b) Geostrophic outflow cal-
culations for the period 1970-1990 in the Bornholm Channel. Picture taken from Kõuts and

Omstedt [1993].(c) Time-series of flowrate of lower layer with two layer model for the Bornholm
Channel. (d) Time-series of salinity distribution in lower layer with two layer model for the
Bornholm Channel.
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Figure 5.22: Current velocity vectors in the region of Kriegers Flak after (a) 8.5, (b) 11.5, (c)
15.5 and (d) 30 days. (e) The plume thickness near Kriegers Shoal and (f) the current velocity
of the plume. The values in the legend represent the grid boxes used for discretisation of model
equations whereas one grid box in east direction represent a length of 1036 m and one grid box
in north direction a length of 909 m.

97



5.3. BALTIC SEA INFLOW EVENT WITH EXTENDED BATHYMETRY

Figure 5.23: Current velocity vectors in the region of Kriegers Flak after (a) 29, (b) 56, (c)
77 and (d) 151 days. (e) The plume thickness near Kriegers Shoal and (f) the current velocity
of the plume. The values in the legend represent the grid boxes used for discretisation of model
equations whereas one grid box in east direction represent a length of 1036 m and one grid box
in north direction a length of 909 m.
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Chapter 6

Conclusions

This study on the dynamics, mixing processes and pathways of saline bottom currents
during the Baltic Sea inflow event with special interest on the Arkona Sea has demon-
strated that the idealized approach of a two layer system for the saline bottom current is
justified. Model results compared to recent observations as obtained during a medium-
intensity saltwater inflow event over Drodgen Sill in Jan and Feb 2004 (Burchard et al.

[2005]) are in good agreement. It has been demonstrated that dense water plumes from
Drodgen Sill are mainly propagating north of Kriegers Shoal with significantly lower
flowrates for the branch south of Kriegers Shoal. This feature of the saline plume has
also been a main conclusion of Burchard et al. [2005].
It has also been shown that the Arkona Sea as the most western basin of the Baltic
Sea plays a very important role for water mass transformations with an increase of
the flowrate up to a calculated value of 87% from west of Kriegers Shoal up to the
Bornholm Channel.
Due to the comparatively simple model output of the two layer model as a horizontal
two-dimensional physical system, basic assumptions for flowrates north and south of
Kriegers Shoal as well as for the Arkona Sea were easily obtained.
Furthermore it was possible to demonstrate that the saline bottom current crossing the
Darss Sill significantly influences the current velocities and directions in the south-east
of Kriegers Shoal. Additionally the impact of the flow from Darss Sill turns out to have
only negligible impact on the bottom current in the north of Kriegers Shoal. For the
time being this can only be assumed for the applied idealized simulation. Obtained
flowrates in the Bornholm Channel have shown similar results as calculated by Kõuts

and Omstedt [1993].
Main reasons for qualitative less good results are: idealistic model forcing, saline bot-
tom current as two layer system, numerical diffusion of two layer model and too coarsely
horizontal model resolution.
It is noteworthy that the dynamics of the two layer model simulated plume are in very
good agreement with the simulations of the 3D ocean model GETM. The disagreement
in the velocity of propagation between both models for the plume crossing the Danish
Belts is less than 2 days after nearly two months of simulation. The agreement in
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the dynamics and lateral broadening of the plume during the idealized Arkona inflow
event was surprisingly good, too. The reason may be the use of the recently developed
formulation for the entrainment rate (Arneborg et al. [2005]). This formula is directly
based on observations in the Arkona Sea, the geographical region mainly investigated
with the two layer.
An advantage of this model is the simplicity of the model output compared to the 4D
output of 3D models that is comparatively hard to analyse. Consequently the reason
of the well mixed bottom water south of Kriegers Flak could easily be investigated and
explained.

Additionally the two layer model can be applied for lake research with the investi-
gation of Kelvin waves and internal waves. An expansion of the two layer model to a
three layer model would be purposeful.
Further investigations about bottom currents running into the Gotland deep are planned
within the scope of a master thesis at the Baltic Sea Research Institute of Warnemünde.
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