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Chapter 1

Introduction

In this study, a three-dimensional baroclinic turbulence model especially de-

veloped for the simulation of currents and transports in shallow water sea

areas (such as the North Frisian Wadden Sea) is extended to include the

advective and diffusive transport of passive Lagrangian tracers. In physical

oceanography, a tracer is a substance such as a dye or a radioactive iso-

tope that can be traced as it is transported with the mean flow field. The

measurement of anthropogenic and natural tracers in the ocean provided

the first estimate about the time scales of the ventilation of the deep ocean.

Since the 1970s, tracer methods have made significant contributions to the

understanding of the ocean circulation, internal water mass structures and

time scales of the ventilation. Furthermore, numerical simulations of tracer

transport are a valuable tool to estimate the dispersion of pollutants such as

oil or sewage disposals in the ocean for the research of the long-term effects

and the development of effective counter-active measures.

Advective processes play a key role in the transport of tracer particles, there-

fore a particle tracking model should resolve these processes as accurate as

possible. In this thesis, the analytical solution of the Lagrangian advection

equation (Duwe [1988]) is used to implement a Lagrangian tracer model.

In addition to advection, transport occurs due to turbulent motions in the

water column. Turbulent mixing is included in the particle tracking model

by means of a stochastic model. The first stochastic model to describe

natural phenomena was introduced by Einstein as he studied the random

motion of microscopic particles suspended in a fluid (Einstein [1905]). Since

that time stochastic or random walk models of particle motions have proved

to be a successful and flexible tool in the investigation of the dispersion

of passive tracers in high Reynolds-number turbulence (Maier-Reimer and

Sündermann [1982], Dimou and Adams [1993], Hunter et al. [1993]). Being
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Lagrangian in concept, they provide a more natural approach to model tur-

bulent diffusion than differential transport equations.

The following report is structured as follows. The second chapter gives an

overview of the numerics and physics of the General Estuarine Transport

Model (GETM) and the Lagrangian transport model. In chapter three,

results are presented from numerical experiments carried out under ide-

alised conditions. Chapter four shows a realistic application of the three-

dimensional transport model to the Wadden Sea area in order to determine

the residence time of the Langeoog inter-tidal basin. The summary and an

outlook can be found in chapter five. In Appendix A, the analytical solution

of the tracer trajectories for the test case described in section 2.1 is derived.
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Chapter 2

Theory

2.1 The physics and numerics of GETM

2.1.1 Equations of motion

The General Estuarine Transport Model (GETM) is based on the three-

dimensional hydrostatic equations of motions with the Boussinesq approxi-

mation and the eddy viscosity assumption (Haidvogel and Beckmann [1999]).

The horizontal velocity components can be written in Cartesian coordinates

as (Burchard and Bolding [2002])

∂u

∂t
+

∂(uw)

∂z
− ∂

∂z

(
(νt + ν)

∂

∂z
u

)

+α

(
∂(u2)

∂x
+

∂(uv)

∂y
− ∂

∂x

(
2AM

h

∂u

∂x

)

− ∂

∂y

(
AM

h

(
∂u

y
+

∂v

∂x

))
− fv −

∫ ζ

z

∂b

∂x
dz′
)

= −g
∂ζ

∂x

(2.1.1)

∂v

∂t
+

∂(vw)

∂z
− ∂

∂z

(
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∂v

∂z

)

+α

(
∂(vu)

∂x
+

∂(v2)

∂y
− ∂

∂y

(
2AM

h

∂v

∂y

)

− ∂

∂x

(
AM

h

(
∂u

∂y
+

∂v

∂x

))
+ fu−

∫ ζ

z

∂b

∂y
dz′
)

= −g
∂ζ

y
.

(2.1.2)



CHAPTER 2. THEORY 7

Since the vertical velocity equation is included in terms of the so-called

continuity equation

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.1.3)

it is easy to assure conservation of mass and free surface elevation. In the

above equations, u, v and w are the mean velocity components with respect

to the x-, y- and z-direction. The x-axis is oriented east-west with positive x

towards the west, and the y-axis is oriented south-north with positive y to-

wards the north. The vertical coordinate z is oriented positive upwards and

the water column ranges from the bottom −H(x, y) to the surface ζ(x, y, t)

with t denoting time. The diffusion of momentum is described by the kine-

matic viscosity ν while νt as the vertical eddy viscosity refers to the internal

friction which is generated as laminar flow becomes irregular and turbulent.

The horizontal mixing is parametrised by terms containing the horizontal

eddy viscosity AM
h . The Coriolis parameter and the gravitational acceler-

ation are denoted by f and g, respectively. The buoyancy b is defined as

b = −g
ρ− ρ0

ρ0

(2.1.4)

where ρ is the density and ρ0 stands for a reference density. In Eq. (2.1.1)

and (2.1.2) the last term on the left-hand side is the internal pressure gradi-

ent (due to density gradients) and the term on the right-hand side represents

the external pressure gradient which occurs due to surface slopes.

Since the model was specifically developed for simulating currents and trans-

ports in coastal domains and estuaries, the drying and flooding of mud flats

is incorporated into the governing equations through the coefficient α

α = min

{
1,

D −Dmin

Dcrit −Dmin

}
. (2.1.5)

In the event of drying, the water depth D tends to a minimum value Dmin

and α approaches zero. If D ≤ Dmin, the equations of motion are simplified

because effects like rotation, advection and horizontal mixing are neglected.

This ensures the stability of the model and prevents it from producing un-

physical negative water depths. For D ≥ Dcrit, α equals unity and the usual

momentum equations are retained. In typical Wadden Sea applications,

Dcrit is of the order of 0.1 m and Dmin of the order of 0.02 m (see Burchard

[1998]).
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2.1.2 Boundary conditions

At the free surface z = ζ(x, y, t) and at the bottom z = −H(x, y) kine-

matic boundary conditions are chosen such that particles move along these

boundaries

w =
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
for z = ζ (2.1.6)

w = −u
∂H

∂x
− v

∂H

∂y
for z = −H. (2.1.7)

At the bottom boundary, no-slip conditions are prescribed for the horizontal

velocity components

u = 0 and v = 0 (2.1.8)

so that with Eq. (2.1.7) w = 0 at the bottom. The dynamic boundary

conditions at the surface are formulated as

(νt + ν)
∂u

∂z
= ατx

s (2.1.9)

(νt + ν)
∂v

∂z
= ατ y

s (2.1.10)

where τx
s and τ y

s are the surface stresses calculated as a function of meteoro-

logical parameters such as wind speed, wind direction and surface roughness.

The lateral boundary conditions are chosen such that no flow across material

boundaries occurs, i.e. for an eastern or a western closed boundary it fol-

lows that u = 0. Furthermore, it is assured that the velocity gradients across

open boundaries vanish. In the case of an open boundary in the east or west

of a model domain, this leads to the consequence that ∂u/∂x = ∂v/∂x = 0.

At so-called forced open boundaries, the sea surface elevation ζ is prescribed

while at passive open boundaries the curvature of the surface elevation nor-

mal to the boundary is assumed to be zero (i.e. spatial derivatives vanish).

2.1.3 The turbulence model

The turbulent quantities νt (eddy viscosity) and ν ′t (eddy diffusivity) are

parametrised by means of a turbulence model which uses two parameters,

the turbulent kinetic energy (TKE) k and the energy dissipation rate (ERD)

ε. An important characteristic of turbulence is the formation of eddies. Eddy
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formation occurs at large scales where turbulence is generated via mechan-

ical means (through shear) or via buoyancy. Large eddies are unstable and

continuously break down into successively smaller eddies. This phenomenon

is often referred to as the turbulent cascade and eddy breakdown occurs in

a random or chaotic manner. The flowing liquid possesses mass and velocity

and thus has kinetic energy (turbulent kinetic energy). The kinetic energy

is passed down through the eddies with some of the energy being used to

overcome viscous forces and is thus lost as heat. This loss is described by the

energy dissipation rate ε. Eventually, the eddies break down to a size where

they have insufficient kinetic energy to form smaller eddies. The smallest

eddy size that can be formed is defined by the Kolmogorov length scale. The

basic form of the k − ε model can be written as (Burchard [2002])

∂k

∂t
− ∂

∂z

((
ν +

νt

σk

)
∂k

∂z

)
= P + B − ε (2.1.11)

∂ε

∂t
− ∂

∂z

((
ν +

νt

σε

)
∂ε

∂z

)
=

ε

k
(c1εP + c3εB − c2εε) (2.1.12)

with the turbulent kinetic energy equation (2.1.11) and its dissipation rate

(2.1.12). The vertical diffusion of k and ε is denoted by the Schmidt numbers

σk and σε, respectively. P and B are shear and buoyancy production defined

as

P = νt

((
∂u

z

)2

+

(
∂v

z

)2
)

, B = −ν ′t
∂b

∂z
. (2.1.13)

Empirical parameters in Eq. (2.1.12) are denoted by c1ε, c2ε, and c3ε. Finally,

the Kolmogorov-Prandtl expression for eddy viscosity and diffusivity is used

νt = cµ
k2

ε
, ν ′t = c′µ

k2

ε
(2.1.14)

to calculate νt and ν ′t in terms of k and ε. In Eq. (2.1.14) cµ and c′µ are so-

called stability functions depending on shear, stratification and turbulent

time scale, τ = k/ε.
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2.1.4 Transport of tracers

The transport of tracers such as temperature, salinity or chemical substances

is already included in GETM by the conservation equation

∂Ci

∂t
+

∂(uCi)

∂t
+

∂(vCi)

∂t
+

∂

∂z

((
w + wi

s

)
Ci
)
− ∂

∂z

(
ν ′t

∂Ci

∂z

)

− ∂

∂x

(
AT

h

∂Ci

∂x

)
− ∂

∂y

(
AT

h

∂Ci

∂y

)
= Qi.

(2.1.15)

Here, Ci represents a number of Nc tracers, so that 1 ≤ i ≤ Nc. The terms

including the components of the velocity vector estimate the advective trans-

port of the tracer Ci due to the mean flow velocity field. The turbulent

diffusive transport of Ci is introduced through the horizontal eddy diffu-

sivity AT
h and the vertical eddy diffusivity ν ′t. Vertical migration of tracer

concentrations such as settling of suspended matter or active migration of

micro-organisms is considered by the additional velocity component wi
s (pos-

itive for upward motion). On the right-hand side of Eq. (2.1.15), Qi denotes

all internal sources and sinks of the tracers.

2.1.5 Temporal discretisation: mode splitting

Since the free surface dynamics are included in Eq. (2.1.1) and (2.1.2), the

solutions will involve adjustment due to external gravity waves. To avoid

numerical instabilities, it is necessary to solve these equations at a time

step dictated by the Courant-Friedrichs-Levy (CFL) condition for the fast

external gravity waves

∆text < min

{
1

2

(
1

∆x
+

1

∆y

)√
2gD

}−1

. (2.1.16)

In general, it is computationally too expensive and not necessary to obtain

solutions at such high temporal resolution. Thus, it is desirable to eliminate

external mode calculations as far as possible. This is achieved by a tech-

nique called mode-splitting (Schwiderski [1980]) which involves separating

out the external (barotropic) and internal (baroclinic) mode equations. Each

of them can then be solved separately at appropriate time steps. The ex-

ternal mode uses the depth-integrated momentum equations and the depth-

integrated continuity equation to predict water surface elevations and mean

horizontal velocities U and V . The baroclinic equations, on the other hand,

are solved using a much larger time step dictated by the Courant number
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for advection

∆tint < min

{
∆x

umax

,
∆y

vmax

}
(2.1.17)

where umax and vmax are the maximum horizontal advective velocities.

Advection in the internal and external mode of the model is discretised using

an explicit numerical scheme for the time differencing while diffusion in the

vertical is discretised with an implicit scheme.

In GETM, a macro time step ∆t is used for the internal mode while the

external mode uses a micro time step ∆tm. The latter is an integer fraction

M of the first one and is limited by means of Eq. (2.1.16). The macro

time step is limited by the maximum current speed in Eq. (2.1.17). The

organisation of the time stepping is shown in Fig. 2.1.1.

2.1.6 Spatial discretisation

The model equations are discretised on an Arakawa-C finite difference grid

(Arakawa and Lamb [1977]) which belongs to a class of staggered grids. In

a C-grid, quantities such as ζ and topographic height H are defined at the

centre of the grid while the zonal velocity component u is transposed half a

grid to the west of the centre and the meridional component v is displaced

half a grid to the south of the centre. The spatial coordinates x and y are

located at the corners of each horizontal grid cell and indexing is carried

out with i-indices in eastern, j-indices in northern and k-indices in upward

direction. Thus, each grid point is defined by a triple (i, j, k). In GETM,

the centre of a grid cell is referred to as the tracer point (T-point) because

here, all tracers such as temperature T , salinity S, the general tracers Ci

and the density ρ are computed. The layout of the horizontal grid is shown

in detail in Fig. 2.1.2b. It should be noted that GETM is capable to run on

a curvilinear grid. Since all simulations were carried out using a Cartesian

rectangular grid with horizontal spatial increments ∆x and ∆y, this will not

be discussed here any further.

For vertical discretisation, the water column is divided into N non-intersecting

layers hk (k = 1, · · · , N) ranging from the bottom at z = −H(x, y) to the

surface at z = ζ(x, y, t). This is achieved by introducing N−1 internal levels

zk (k = 1, · · · , N − 1). The vertical location and the depth hk = zk − zk−1

of each surface layer depends on the horizontal position (x, y) and time t.

All physical quantities are computed on a vertically staggered Arakawa C-

grid which consists of control volumes around the T-points. To resolve the

surface and bottom boundary layers, the vertical equations of the model are
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restructured in a bottom and surface following σ-coordinate system. The

σ-coordinate scales the vertical coordinate z by the water depth D = H + ζ,

thereby preserving all model layers as the bathymetry and surface elevation

change. For σ-coordinates, the internal z-levels can be calculated according

to Freeman et al. [1972] as

zk = D
k

N
− 1︸ ︷︷ ︸

σk

. (2.1.18)

In σ-coordinates, the surface (k = N) is denoted by σk = 0 and for the

bottom σk becomes −1. The layout of the vertical grid is depicted in Fig.

2.1.2b.

n+1n+1/2nn-1/2n-1

Micro

Macro

ζ

u,v,w,U ,V  

U, V

ζ

Macro timestep  

Micro timestep

Fig. 2.1.1: Time stepping scheme. u, v, w are the components of the velocity
vector and Ū , V̄ are the time averaged vertical transports calculated only every
macro time step. The vertically integrated transports U and V are computed every
micro time step. Only the sea surface elevation ζ is determined every micro and
macro time step. This figure has been taken from Burchard and Bolding [2002].

2.2 The transport equation

In natural waters, transport of tracers is described as a combination of ad-

vection and diffusion. Advection is the transport associated with the mean

flow of a fluid while diffusion is associated with random motions of molecules

and turbulence within a fluid.

2.2.1 The Fickian diffusion equation

Following Fischer et al. [1979] it is shown here how to derive the molecu-

lar diffusion equation which covers two primary properties: it is random in
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i

j

H, ζ, k, ε, ν , ν

u, U
v, V

∆x

∆y

tt '

a)

i

k

ρ, Ci

u

w, k, ε, ν , ν't t

b)

Fig. 2.1.2: a) horizontal model grid and b) vertical grid. Each grid box refers
to the tracer point (T-point) in its centre. The physical quantities located on the
grid are explained in the text. The following symbols are used: +: T-points; ×:
u-points; ?: v-points; 4: w-points; •: x-points; ◦: xu-points. The inserted frames
denote grid points with the same index (i, j) and (i, k), respectively. The figures
have been adapted from Burchard and Bolding [2002].

nature, and transport is from regions of high concentration to low concentra-

tion. To derive a diffusive flux equation, two rows of molecules side-by-side

and centred at x = 0 are considered (Fig. 2.2.1a). Each of these molecules

moves about randomly in response to the temperature. For simplicity’s sake

only the x-component of their three-dimensional motion is taken into ac-

count (i.e. motion to the left or right) with the same constant diffusion

velocity for each particle. The mass of molecules on the left is defined as Ml

and the mass of molecules on the right as Mr while the probability (transfer

rate per time) that one of them moves across x = 0 is k. After some time

∆t, approximately half of the particles have taken steps to the right and the

other half has taken steps to the left as depicted by Fig. 2.2.1b and 2.2.1c.

The particle histograms in Fig. 2.2.1 show that maximum concentrations

decrease while the total region containing molecules increases (the particle

cloud spreads out). Mathematically, the average flux of particles from the

left-hand column to the right is −k Ml and the average flux of particles from

the right-hand column to the left is −k Mr where the minus sign is used to

distinguish direction. Thus, the net flux qx is

qx = k (Ml −Mr). (2.2.1)
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= ∆x

x

n n

x
a) initial distribution

b) random motions
c) final distribution

Fig. 2.2.1: Schematic of the one-dimensional molecular (Brownian) motion of a
group of molecules illustrating the Fickian diffusion model. The upper part of the
figure shows the molecules themselves and the lower part of the figure gives the
corresponding histogram of particle location which is analogous to concentration.

Now, Eq. (2.2.1) can be transformed into an equation for C by considering

that for the one-dimensional case concentration is mass M per length ∆x =

xr − xl

Cl =
Ml

∆x
(2.2.2)

Cr =
Mr

∆x
(2.2.3)

and by noting that dC
dx

is defined as

dC

dx
=

Cr − Cl

xr − xl

=
Cr − Cl

∆x
. (2.2.4)

Let now ∆x be the length of the average step in x-direction taken by a

particle in the time ∆t. Combining Eq. (2.2.2) with Eq. (2.2.4) gives

dC

dx
=

Mr −Ml

(∆x)2
⇔ Ml −Mr = −(∆x)2 dC

dx
, (2.2.5)

which can be substituted into Eq. (2.2.1) to yield

qx = −k (∆x)2 dC

dx
= −D

dC

dx
(2.2.6)

where D represents the molecular diffusion coefficient. The molecular diffu-

sion coefficient is a molecular property and not a characteristic of the flow.

Generalising to three dimensions, the diffusive flux vector ~q can be found by

adding the other two dimensions (y and z), yielding

~q = −D

(
∂C

∂x
,
∂C

∂y
,
∂C

∂z

)
(2.2.7)

= −D∇C.
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Diffusion processes that obey this relationship are called Fickian processes,

and Eq. (2.2.7) is called Fick’s law. The diffusive flux ~q is expressed in units

kg/(m2 s). In order to compute a total mass flux rate m with units kg/s the

normal component of the diffusive flux vector has to be integrated over a

surface area A

m =

∫ ∫
A

~q · ~n dA (2.2.8)

where ~n is the unit vector normal to the surface element dA. Although Fick’s

law gives an expression for the flux of mass due to diffusion, an equation that

predicts the change in concentration of the diffusing mass over time at a point

(i.e. ∂C
∂t

) is still needed. Such an equation can be derived by determining

the change in concentration with time C of a dissolved substance in a fixed

control volume CV (i.e. ∆x, ∆y, ∆z = ∆V = const.) together with the law

of conservation of mass as depicted in Fig. 2.2.2

∂

∂t

∫ ∫ ∫
V

C dV. (2.2.9)

It should be noted that a change in C only occurs due to mass flux through

the surface areas (i.e. no sources or sinks are present in CV ). For the

x-direction the net flux qx according to Fick’s law is

qx = qx,in − qx,out = −D

(
∂C

∂x

∣∣∣∣
x=1

− ∂C

∂x

∣∣∣∣
x=2

)
. (2.2.10)

Here, x = 1 and x = 2 are the locations of the left and right surface areas

of CV in x-direction, respectively. The net mass flux rate m for CV is Eq.

(2.2.8) and conservation of mass requires that

∂

∂t

∫ ∫ ∫
V

CdV +

∫ ∫
A

~q · ~n dA = 0. (2.2.11)

By bringing the time differentiation inside the volume integral and applying

the divergence theorem of Gauss∫ ∫ ∫
V

∇ · ~q dV =

∫ ∫
A

~q · ~n dA (2.2.12)

to the surface integral, Eq. (2.2.11) can be written as∫ ∫ ∫
V

(
∂C

∂t
+∇ · ~q

)
dV = 0. (2.2.13)

Since this equation holds for an arbitrary volume CV , the integrand must

vanish thus leading to

∂C

∂t
+∇ · ~q = 0. (2.2.14)
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Substituting Eq. (2.2.7) into Eq. (2.2.14) yields the molecular diffusion

equation

∂C

∂t
= D∆C (2.2.15)

or fully written out in Cartesian coordinates

∂C

∂t
= D

(
∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)
. (2.2.16)

∆x

∆y

∆z

x

y

z

qx,in qx,out

Fig. 2.2.2: Differential control volume CV for derivation of the diffusion equation.

2.2.2 The advection-diffusion equation

The derivation of the advection-diffusion equation relies on the principle of

superposition: advection and diffusion can be added together because they

are linearly independent of each other (i.e. one process does not feed back

on the other). Due to diffusion, each particle moves in time ∆t either one

step to the left or one step to the right (i.e. ∆x). Due to advection, each

particle will also move u∆t in x-direction. The net movement of the particle

is u∆t±∆x and thus, the total flux for three-dimensional flow ~J , including

the advective transport and a Fickian diffusion term, must be

~J = ~uC + ~q = ~uC −D∇C (2.2.17)

where ~u = (u, v, w) is the velocity vector. This flux law and conservation of

mass can be used to derive the advection-diffusion equation. To do this, the

control volume CV is used again with a cross sectional flow as depicted by

Fig. 2.2.3. The net mass flux rate m for CV is

m =

∫ ∫
A

~J · ~n dA. (2.2.18)
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Substituting Eq. (2.2.18) into Eq. (2.2.11) and following the reasoning

which has lead to Eq. (2.2.14) yields

∂C

∂t
+∇ · ~J = 0. (2.2.19)

Replacing ~J with Eq. (2.2.17) gives the advection-diffusion equation as

∂C

∂t
+∇ · (~u C) = D ∆C (2.2.20)

The equation of continuity for incompressible flow is ∇ · ~u = 0 and Eq.

(2.2.20) becomes

∂C

∂t
+ ~u · ∇C = D ∆C. (2.2.21)

u

∆x

∆y

∆z

x

y

z

Jx,in Jx,out

Fig. 2.2.3: Schematic of a control volume CV with cross flow.

2.2.3 Turbulent diffusion

Molecular diffusion alone is entirely insufficient to produce the rate of mix-

ing observed in natural waters. The difference between the observed rate of

diffusion and the rate expected from molecular diffusion is the result of tur-

bulent diffusion. Thus, the advection-diffusion equation has to be extended

to include the influence of turbulence. A conservation equation for turbulent

flows can be derived from the advection-diffusion equation by decomposing

the velocity vector and the concentration into the sum of a time averaged

and a fluctuating part

C = C + C
′
, (2.2.22)

u = u + u′, (2.2.23)

v = v + v′, (2.2.24)

w = w + w′ (2.2.25)
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where ¯ denotes the time average and ′ is the instantaneous fluctuation (or

deviation from the mean). The following rules for time averaging of Eq.

(2.2.22) - (2.2.25) are assumed (see Burchard [2002])

1. Time average of the time average:

Ψ = Ψ (2.2.26)

2. Time average of the fluctuation:

Ψ′ = 0 (2.2.27)

3. Linearity:

Ψ + λ Ψ = Ψ + λΨ (2.2.28)

4. Product average:

ΨΨ = ΨΨ (2.2.29)

ΨΨ′ = 0 (2.2.30)

Ψ′Ψ′ 6= 0 (2.2.31)

5. Derivatives and average commute:

∂Ψ

∂x
=

∂Ψ

∂x
(2.2.32)

Substituting Eq. (2.2.22) - (2.2.25) into Eq. (2.2.20) gives

∂(C + C
′
)

∂t
+ (u + u′)

∂(C + C
′
)

∂x
+ (v + v′)

∂(C + C
′
)

∂y
(2.2.33)

+ (w + w′)
∂(C + C

′
)

∂z
+ (C + C

′
)
∂u + u′

∂x

+ (C + C
′
)

∂(v + v
′
)

∂y
+ (C + C

′
)
∂w + w′

∂z

= D
∂2C + C ′

∂x2
+ D

∂2C + C ′

∂y2
+ D

∂2C + C ′

∂z2

Time averaging of Eq. (2.2.33) with respect to the rules (2.2.26) - (2.2.32)

yields

∂C

∂t
+∇ · (~u C) = D∆C − ∂

∂x
(u′C ′)− ∂

∂y
(v′C ′)− ∂

∂z
(w′C ′). (2.2.34)

The time averaged transport equation (2.2.34) is similar to the instantaneous

equation (2.2.20) with the addition of the last three terms on the right-hand
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side which correspond to the transport of C by turbulent fluctuations. These

additional terms can be rewritten together with the diffusive transport D∆C

as

∂

∂x

(
D

∂C

∂x
− u′C ′

)
+

∂

∂y

(
D

∂C

∂y
− v′C ′

)
+

∂

∂z

(
D

∂C

∂z
− w′C ′

)
. (2.2.35)

All terms in the parentheses represent mass transport. The first of these

terms stands for the transport due to molecular diffusion (Fick’s law) and

the second is a turbulent flux that arises by virtue of the correlation between
~u′ and C

′
where ~u′ = (u′, v′, w′). Since the molecular diffusion coefficient is

usually a very small quantity (i.e. ~u′C ′ � D ∂C
∂x

), the molecular diffusion

terms can be neglected compared to turbulent flux. The terms denoting

the turbulent transport represent unknown quantities. Assuming that the

turbulent diffusion is a Fickian process, this closure problem is solved by

introducing a coefficient of eddy diffusivity for each direction. With this

assumption and the notation Ax, Ay for the horizontal eddy diffusivities and

ν ′ for the vertical eddy diffusivity, the closure scheme is

u′C ′ = −Ax
∂C

∂x
v′C ′ = −Ay

∂C

∂y
w′C ′ = −ν ′

∂C

∂z
. (2.2.36)

The coefficients Ax, Ay, ν
′ are strongly flow dependent and vary within the

flow field. With the assumption that turbulent mixing is much stronger than

molecular diffusion the transport equation for turbulent flow is

∂C

∂t
+∇ · (~u C) =

∂

∂x

(
Ax

∂C

∂x

)
+

∂

∂y

(
Ay

∂C

∂y

)
+

∂

∂z

(
ν ′

∂C

∂z

)
. (2.2.37)

2.2.4 Eulerian vs. Lagrangian perspective

Fluid motion and any constituent (temperature, salinity, concentration of an

arbitrary substance) transported by fluid motion can be described from two

frames of reference, from a stationary frame (Eulerian) and from one which

is moving along with the flow (Lagrangian). In the Eulerian perspective, the

flow and its constituents are described with respect to fixed spatial positions

~x = (x, y, z) and time t. Thus, they are written as e.g. ~u(~x, t) and C(~x, t).

The Lagrangian perspective follows the flow and traces the history of indi-

vidual fluid particles. Unlike in the Eulerian description, spatial position is

not a fixed reference but another variable of the particle. The flow variables

are written with respect to time t and to a single, initial reference position,

e.g. ~x0 the particle position at t = 0. In this case all variables are recorded

as e.g. ~x(~x0, t) and C(~x0, t).
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Now, let us assume that any flow variable in fixed Eulerian coordinates is

represented by Ψ(x, y, z, t). A change in Ψ due to a small change in spatial

position d~x = (dx, dy, dz) and time dt can be written as

dΨ =
∂Ψ

∂t
dt +

∂Ψ

∂x
dx +

∂Ψ

∂y
dy +

∂Ψ

∂z
dz. (2.2.38)

In order to obtain the rate of change of Ψ while following the trajectory of an

individual particle through the flow (Lagrangian perspective), Eq. (2.2.38)

is divided by dt which leads to

dΨ

dt
=

∂Ψ

∂t
+

∂Ψ

∂x

dx

dt
+

∂Ψ

∂y

dy

dt
+

∂Ψ

∂z

dz

dt
(2.2.39)

=
∂Ψ

∂t
+ u

∂Ψ

∂x
+ v

∂Ψ

∂y
+ w

∂Ψ

∂z

dz

dt

=
∂Ψ

∂t
+ ~u · ∇Ψ

where d/dt denotes the total (or substantial) derivative. Thus, the advection-

diffusion equation can be written in two ways. The Eulerian form was al-

ready shown in the last section to be (see Eq. (2.2.37)

∂C

∂t
+∇ · (~u C) =

∂

∂x

(
Ax

∂C

∂x

)
+

∂

∂y

(
Ay

∂C

∂y

)
+

∂

∂z

(
ν ′

∂C

∂z

)
. (2.2.40)

The Lagrangian advection-diffusion equation can be obtained by substitut-

ing Eq. (2.2.39) into Eq. (2.2.40)

dC

dt
+ C∇ · ~u =

∂

∂x

(
Ax

∂C

∂x

)
+

∂

∂y

(
Ay

∂C

∂y

)
+

∂

∂z

(
ν ′

∂C

∂z

)
. (2.2.41)

2.3 Modelling transport

Modelling transport in fluids of any arbitrary substance can be done in

several ways. As proposed by the advection-diffusion equation, one could

compute the change in concentration of a substance at a number of points

in the fluid volume. If this is done with respect to the Eulerian view, con-

centration C is calculated on grid points which are fixed in space. On the

other side, if one is interested in the change of C while moving with the

flow (Lagrangian perspective), the grid points on which C is evaluated must

follow the flow (Maier-Reimer [1973]), i.e. the grid is deformed with time

(Lagrangian grid). In his study, Maier-Reimer [1973] successfully adapted

the ”TUrbulent Diffusion in LAGrangian coordinates”-scheme (TUDLAG)

and a mixed scheme where C is transformed from the Lagrangian to an
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Eulerian grid (TUDELM) to model transport in the North Sea. A major

disadvantage of this method is the progressive deformation of the grid which

in extreme cases leads to numerical instability (e.g. a two-dimensional grid

cell degenerates to a straight line). Another approach by Maier-Reimer

and Sündermann [1982] proposed to interpret the water body not as a con-

tinuum but as finite set of water particles with fixed physical properties

(tracer method). The physical state of an Eulerian variable on the grid

points is defined as the mean value of all particles situated in a grid cell.

This approach can be generalised to include all physical properties such as

velocity, density, temperature and dissolved substances. In the case of a

dissolved substance, it is represented by a discrete number of tracer parti-

cles which is proportional to the concentration C in the grid cell. Instead

of modelling advection and diffusion in terms of concentration, the motions

of the tracer particles due to the mean current field and turbulent velocity

fluctuations and hereby their paths (trajectories) are calculated. Compared

to the established finite techniques, tracer methods have the great profit of

almost completely avoiding unwanted numerical diffusion and thereby as-

sure more accurate results. Maier-Reimer [1973] pointed out the criteria a

numerical method for the advection-diffusion equation has to satisfy in order

to reproduce the dynamics of the physical property which is transported:

1. Positivity: this criterion ensures that positive properties stay positive.

2. Conservation of local mass: in absence of external sources and sinks,

the total quantity of a property must be constant with time

∂

∂t

∫ ∫ ∫
V

C(x, y, z, t) dxdydz = 0. (2.3.1)

3. No numerical diffusion: in the case where turbulent diffusion is absent,

the numerical method must describe transport as it occurs solely due

to advection.

In general, it is difficult to satisfy all three criteria with a numerical scheme in

Eulerian coordinates. See, however, Pietrzak [1998] for a method of incorpo-

rating monotone high-order advection schemes with low numerical diffusion

in three-dimensional models. This method has also been applied by Bur-

chard and Bolding [2002] for GETM. Nevertheless, particle methods have

benefits which can be summarised (Dimou and Adams [1993]) as follows:

1. Sources are more easily represented in a particle tracking model, whereas

concentration models have difficulty resolving concentration fields whose

spatial extent is small compared to that of discretisation.
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2. In particle tracking models the computational effort is concentrated in

regions where most particles are located, while in concentration models

all regions of the domain are treated equally in terms of computational

effort.

3. The parallel nature of tracer models is better suited to the capabilities

of parallel computing.

4. In the Eulerian frame it becomes difficult to model sharp gradients

(i.e. brackish zones), since numerical diffusion is likely to be high near

extremes in tracer concentration so that results tend to be unrealistic.

Using tracer methods there is almost no numerical diffusion.

5. Particle tracking models are more natural where transport and fate

processes are best described by attributes of the individual particles

(e.g. settling of different size particles) rather than their aggregation

(i.e. concentration).

6. Particle tracking models are a direct choice if an integrated property

of the concentration distribution (i.e. residence time) and not the

concentration distribution itself is concerned.

Particle methods have been used in coastal applications to display residual

circulation (Signell and Geyer [1990]) and in concentration-based models

for predicting and displaying pollutant concentrations (Duwe et al. [1987],

Müller-Navarra and Mittelstaedt [1987], Dick and Soetje [1990]). Further-

more, a Lagrangian dispersion model was implemented by Dick and Schönfeld

[1996] to determine water transport, water exchange and mixing times in

sub-areas of the North Frisian Wadden Sea.

2.4 Modelling Lagrangian tracers

The transport model describes the motion of a number of discrete particles

whose positions vary due to advection and turbulence. To do this, transport

is divided into an advective and a diffusive component and each of them

is modelled separately. The advection equation is solved analytically while

turbulent diffusion is modelled with a random walk scheme. In the following

sections, the analytical solution of the advection equation is derived and a

brief description of the stochastic theory behind the random walk model is

given. Furthermore, details on the implementation of the algorithms are

given.
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2.4.1 Modelling advection

The movement of a Lagrangian tracer due to advection is described by the

ordinary differential equation

d~xT

dt
= ~vT (~xT (t)) (2.4.1)

where ~xT (t) = (xT (t), yT (t), zT (t)) is the particle position and ~vT (~xT (t)) =

(uT (~xT (t)), vT (~xT (t)), wT (~xT (t)) is the corresponding velocity vector. To cal-

culate the movement of particles one can either apply a standard numerical

integration scheme to the equation of motion (2.4.1) (e.g. the Runge-Kutta

method) or find its analytical solution. The analytical solution is not diffi-

cult to obtain and has the advantage that the results based on it are very

accurate.

2.4.1.1 Interpolation scheme

An interpolation scheme is necessary to transform the velocity components

calculated by GETM from the Eulerian grid to the position ~xT of a tracer.

Maier-Reimer [1973] used bilinear interpolation on an Arakawa C-grid con-

sidering four points for each velocity component. As two of these four points

are always located outside the grid box containing the tracer particle, they

are inappropriate to reflect the flow within this grid cell. Furthermore in

GETM, the discretised equation of continuity only takes into account the

velocity points defined on the boundaries of each grid box to guarantee

conservation of mass. Thus, applying bilinear interpolation would clearly

violate the equation of continuity. The linear interpolation applied by Duwe

[1988] only uses the six velocity points defined on the boundaries of each

grid box and thus conserves mass. As a consequence the velocity compo-

nents within a grid box are solely functions of their corresponding direction

(i.e. ∂u/∂y = ∂u/∂z = 0). This has two advantages:

1. the interpolation scheme and hence the Lagrangian tracer model is

consistent with GETM (mass conserving) which computes the velocity

and

2. the acceleration of a particle on its path is easily calculated.
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To determine the velocity at the location of a particle in the grid box denoted

by (i, j, k) the following linear equations are used

uT (~x) = a · u(i, j, k) + (1− a) · u(i− 1, j, k) (2.4.2)

vT (~x) = b · v(i, j, k) + (1− b) · v(i, j − 1, k) (2.4.3)

wT (~x) = c · w(i, j, k) + (1− c) · w(i, j, k − 1) (2.4.4)

where a, b and c are the weighting factors (Fig. 2.4.1)

Fig. 2.4.1: Shown is the reference box for the tracer position with the weighting
factors a, b, c used to linearly interpolate u, v and w. The following symbols are
used: �: tracer position +: T -points; ×: u-points; ?: v-points; 4: w-points; •:
x-points; ◦: xu-points.

2.4.1.2 Analytical solution of the advection equation

Following Schönfeld [1994] it is shown here how to derive the analytical

solution for the one-dimensional equation of particle movement. Equation

(2.4.1) can be written as the linear interpolation from the already known

velocity field as follows

dxT

dt
= uT =

xT − xl

xr − xl

ur +

[
1− xT − xl

xr − xl

]
ul. (2.4.5)

Here xl, xr are fixed grid points, xT is the position of a particle in between

and ul, ur are the velocities at xl and xr, respectively. This linear inhomo-

geneous first order ordinary differential equation can be solved by means of

the integrating factor technique. As a first step towards the solution Eq.

(2.4.5) is rewritten as

d~xT

dt
+ xT · −

∆u

∆x︸ ︷︷ ︸
=f(t)

= ul − xl
∆u

∆x
(2.4.6)



CHAPTER 2. THEORY 25

where ∆u = ur − ul and ∆x = xr − xl. In a next step the antiderivative

F (t) = −t∆u
∆x

to f(t) is found and the integration factor eF (t) is formed.

Then, Eq. (2.4.6) is multiplied with the integration factor which yields

d

dt

(
xT e−t∆u

∆x

)
= e−t∆u

∆x

(
ul − xl

∆u

∆x

)
. (2.4.7)

Integration of both sides with respect to t gives

xT (t) = xl − ul
∆x

∆u
+ Cet∆u

∆x (2.4.8)

where C is the integration constant. C can be determined through the initial

condition xT (t0) = xT,0 (i.e. initial position of the particle)

xT (t0) = xT,0 = xl − ul
∆x

∆u
+ Cet0

∆u
∆x

⇔ C =

(
xT,0 + ul

∆x

∆u
− xl

)
e−t0

∆u
∆x (2.4.9)

As a final step xT,0 is replaced in Eq. (2.4.9) by recognising

dx

dt

∣∣∣∣
t=t0

= uT,0 = xT,0
∆u

∆x
+ ul − xl

∆u

∆x

⇔ xT,0 = uT,0
∆x

∆u
+ xl − ul

∆x

∆u
(2.4.10)

such that the particle position can be readily determined as

xT (t) = uT,0
∆x

∆u
e

∆u
∆x

(t−t0). (2.4.11)

The distance ∆xT = xT (t) − xT,0 a particle travels during a time step

∆t = t− t0 is then

∆xT =
uT,0 ∆x

∆u

(
e

∆t ∆u
∆x − 1

)
(2.4.12)

In Appendix B a second way to obtain the solution to the movement equation

(2.4.12) is presented. In analogy to Eq. (2.4.12) the movement of a particle

in x and y-direction is

∆yT =
vT,0 dy

∆v

(
e

∆t ∆v
dy − 1

)
(2.4.13)

∆zT =
wT,0 ∆z

∆w

(
e

∆t ∆w
∆z − 1

)
. (2.4.14)

For uniform flow (i.e., ∆u = ∆v = ∆w = 0) the particle motion is simply

calculated with

∆xT = uT,0 ∆t (2.4.15)

∆yT = vT,0 ∆t (2.4.16)

∆zT = wT,0 ∆t. (2.4.17)
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2.4.1.3 Interpolation between grid cells

The interpolation scheme (2.4.2) - (2.4.4) is only valid for the reference box

for the current particle position. Thus, if the tracer crosses the boundary to

any adjacent cell within a given time step, interpolation has to be carried

out again considering the velocity points valid for the new cell. This can

be achieved by computing the time necessary for a particle to reach one

of the surrounding boundaries xboundary, yboundary and zboundary. Which of

the two boundaries in a certain direction can be reached is determined by

the algebraic sign of the corresponding velocity component at the position

of a particle (i.e. if u > 0 then the boundary at index i can be reached

and if u < 0 then the boundary at index i − 1 can be reached). The time

∆tx, ∆ty, ∆tz a tracer particle needs to travel the distance

∆xT = xboundary − xT

∆yT = yboundary − yT

∆zT = zboundary − zT

to a boundary is calculated by rewriting Eq. (2.4.12) - (2.4.14) with respect

to ∆t

∆tx = ln

(
∆xT ∆u

∆x uT

+ 1

)
∆x

∆u
(2.4.18)

∆ty = ln

(
∆yT ∆v

∆y vT

+ 1

)
∆y

∆v
(2.4.19)

∆tz = ln

(
∆zT ∆w

∆z wT

+ 1

)
∆z

∆w
. (2.4.20)

The advection step is then carried out with a time step

∆tT = min(∆tx, ∆ty, ∆tz, ∆t) (2.4.21)

where ∆t is the macro time step for the internal mode of GETM. A particle

reaches a boundary, if ∆tT ≤ ∆t and it continues its path in the next

cell with the new interpolated velocity and the remaining time. If another

boundary is crossed, the same procedure applies.

2.4.1.4 Implementation

The Lagrangian advection scheme has been implemented under considera-

tion of the properties mentioned in the last sections. For reasons of simplic-

ity, all calculations have been carried out with respect to spatial coordinates
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i, j, k and not x,y,z. The position of a particle as well as its velocity is trans-

formed by dividing their components by the corresponding grid spacing (i.e.

~xT = (xT /∆x, yT /∆y, zT /∆z) = (iT , jT , kT ). The index (i, j, k) of the grid

box containing a particle is computed from the particle position as

i = int(iT + 0.5) (2.4.22)

j = int(jT + 0.5) (2.4.23)

k = int(kT + 0.5). (2.4.24)

Necessary for the interpolation of the velocity are the weighting factors which

are determined through

a = iT − real(i− 1) (2.4.25)

b = jT − real(j − 1) (2.4.26)

c = kT − real(k − 1) (2.4.27)

so that the tracer velocity can be obtained from Eq. (2.4.2) - (2.4.4). Finally,

the position is updated with respect to crossing of boundaries

in+1
T = inT +

un
T

∆u

(
e∆tT ∆u − 1

)
(2.4.28)

jn+1
T = jn

T +
vn

T

∆v

(
e∆tT ∆v − 1

)
(2.4.29)

kn+1
T = kn

T +
wn

T

∆w

(
e∆tT ∆w − 1

)
. (2.4.30)

The gradients of u, v and w are discretised as

∆u =
un+ 1

2 (i, j, k)− un+ 1
2 (i− 1, j, k)

∆x
(2.4.31)

∆v =
vn+ 1

2 (i, j, k)− vn+ 1
2 (i, j − 1, k)

∆y
(2.4.32)

∆w =
wn+ 1

2 (i, j, k)− wn+ 1
2 (i, j, k − 1)

h(i, j, k)
, (2.4.33)

since they are updated in GETM with an offset of 1/2∆t (see Fig. 2.1.1).

2.4.2 Modelling diffusion

2.4.2.1 The stochastic differential equation (SDE)

In 1908, Langevin considered the problem of the dynamical description of

molecular diffusion. He suggested that the equation of motion of a particle
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can be described by the following differential equation for the velocity ~v

d~v

dt
= −γ~v + ~L(t), (2.4.34)

where the terms on the right-hand side model the forces which act on the

particle. The first term is the dissipative drag force proportional to the

particle velocity and γ denotes the friction coefficient. The second term in-

corporates irregular changes in the velocity caused by random collisions with

other particles. The external force ~L(t) is a vector consisting of zero mean,

temporally uncorrelated random components ξ(t). They can be described

as a stochastic process with mean 〈ξ(t)〉 = 0 and statistical independence

defined as 〈ξ(t + ∆t)ξ(t)〉 = δ(∆t) for ∆t 6= 0. Here, δ(∆t) is Dirac’s delta

function with the following property

lim
∆t→0

δ(∆t) = ∞

which satisfies the requirement of non-correlation at different times. From

statistical independence, it follows that ξ(t) has unlimited variance
〈
(ξ(t)−〈

ξ(t)
〉︸ ︷︷ ︸

=0

)2
〉

= 〈ξ(t)2〉. A stochastic process ξ(t) with the properties above is

called Gaussian white noise.

The Langevin equation is the prototype of a stochastic differential equation

(SDE), i.e. a differential equation with a random term which has some

given statistical properties. This concept can be used in particle tracking

models to describe the position ~x(t) = (x(t), y(t), z(t)) of each tracer as (see

Gardiner [1983])

d~x(t)

dt
= ~A(~x, t) + B(~x, t)~L(t) (2.4.35)

where ~A(~x, t) is a known vector representing the deterministic forces which

act to change ~x(t) (e.g. transport by the mean velocity field). The second

term consists of a known tensor B that characterises the random forces (e.g.

turbulence) and a vector ~L(t) whose components are random numbers ξ(t)

representing the random and chaotic nature of e.g. turbulent diffusion. Here,

ξ(t) is a Gaussian white noise process with the already mentioned properties.

The solution to this random differential equation is problematic because the

presence of randomness prevents the system from having bounded measure

and the derivative does not exist. One way to deal with equations such as

Eq. (2.4.35) is to write them in differential form

d~x(t) = ~A(~x, t)dt + B(~x, t)~ξ(t)dt (2.4.36)
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where dt denotes an infinitesimal step ∆t and ~ξ(t)dt is defined as an incre-

ment of the Wiener process ~W (t). This random process was named after

the American mathematician Norbert Wiener who studied the phenomenon

of Brownian motion and gave its mathematical design. The Wiener process

W (t) describes the path of a particle due to Brownian motion with time

t and consists of an accumulation of independently distributed stochastic

increments dW (t). If W (t) and W (t + dt) are the values of the function at

times t and t + dt, respectively, then dW (t) stands for the increment of the

process in the infinitesimal interval dt

dW (t) = W (t + dt)−W (t) = ξ(t) dt. (2.4.37)

Furthermore, W (t) has the following properties (see Gardiner [1983]):

1. Start: W (t = 0) ≡ 0 (unless a different starting point is specified),

2. Trajectories: paths (trajectories) are continuous functions of t ∈ [0,∞),

3. Mean: 〈W (t)〉 ≡ 0,

4. Correlation function: 〈W (t) W (s)〉 = min(a, b),

5. Gaussian distribution: for any t1, · · · , tn the random vector (W (t1), · · · , W (tn))

is Gaussian,

6. For any s,t: a) 〈W (t)2〉 ≡ t,

b) 〈W (t)−W (s)〉 ≡ 0,

c) 〈(W (t)−W (s))2〉 = 〈W (t)2〉+〈W (s)2〉−2 〈W (t) W (s)〉

= t + s− 2 min(t, s) =


t− s t > s

0 t = s

s− t t < s

 =
∣∣t− s

∣∣,
7. Variance: 〈(W (t)− 〈W (t)〉)2〉 = 〈W (t)2〉 = t,

8. Increment: from property 5 and 6 b), c) it follows that

dW (t) = W (s)−W (t + dt) ∈ N (0,
√

dt) (2.4.38)

where N (0,
√

dt) is a set of Gaussian random numbers with zero mean

and a standard deviation of
√

dt,

9. Increment: all increments W (t2) − W (t1), · · · , W (tn) − W (tn−1) are

statistically independent of each other for t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn.
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Properties of W (t) with the ≡-sign are definitions. With respect to (2.4.37)

the Langevin equation (2.4.35) can be written as

d~x(t) = ~A(~x, t)dt + B(~x, t)d ~W (t), (2.4.39)

where ~W (t) is a vector of independent Wiener processes. In a next step,

Eq. (2.4.38) is used to replace d ~W (t) by a vector of random numbers from

a standard normal distribution ~Z ∈ N (0, 1) multiplied by
√

dt

d~x(t) = ~A(~x, t)dt + B(~x, t)~Z
√

dt. (2.4.40)

The stochastic calculus in this section is usually called Itô calculus, after

the Japanese mathematician Kiyosi Itô. In the following section it is shown

how to determine the still unknown parameters ~A and B by deriving the

Fokker-Planck equation associated with (2.4.40).

2.4.2.2 The Fokker-Planck equation

An alternative to the SDE is to study stochastic processes by means of

probability distribution functions p(x, t). A stochastic process described by

the Langevin equation (2.4.35) (i.e. Brownian motion) possesses the Markov

property: given the one dimensional process x(t), the values of x before

a certain time t are irrelevant when predicting the future behaviour of x.

This property is reflected by the probability distribution function for x(t)

written as p(x, t|x0, t0) which gives the probability for the value x at t under

the condition that it had the value x0 at t0. Stochastic processes which

satisfy this property are called Markov processes. In general, the Fokker-

Planck equation describes the evolution of the distribution function of a

stochastic differential equation. Here it is shown how to obtain the Fokker-

Planck equation for the Langevin equation (2.4.40) and its similarity to the

advection-diffusion equation. The total derivative of an arbitrary function

f(x, t) is

df(x(t)) = f(x(t) + dx(t))− f(x((t)) (2.4.41)

=
∂f(x(t))

∂x
dx(t) +

1

2

∂2f(x(t))

∂x2
(dx(t))2 + · · ·

where dx(t) is calculated by means of the Langevin equation (2.4.39)

dx(t) = A(x, t)dt + B(x, t)dW (t). (2.4.42)
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Substituting Eq. (2.4.42) into Eq. (2.4.41) and only taking into account the

first two terms on the right-hand side yields

df(x(t)) = (A(x, t)dt + B(x, t)dW (t))
f(x(t))

∂x
(2.4.43)

+
1

2
(A(x, t)dt + B(x, t)dW (t))2︸ ︷︷ ︸

(dx(t))2

∂2f(x(t))

∂x2
.

Again, dt is an infinitesimal time step so that (dt)2 ≈ 0 and dW dt ≈ 0.

This allows us to write (dx(t))2 as

(dx(t))2 = (A(x, t) dt + B(x, t) dW (t))2 (2.4.44)

= A(x, t)2 (dt)2 + 2 A(x, t) B(x, t) dW (t) dt + B(x, t)2 (dW (t))2

≈ B(x, t)2 (dW (t))2

and Eq. (2.4.41) simplifies to

df(x(t)) = (A(x, t)dt + B(x, t)dW (t))
∂f(x(t))

∂x
(2.4.45)

+
1

2
B(x, t)2 (dW (t))2 ∂2f(x(t))

∂x2
.

In order to include a probability distribution function, the mean of Eq.

(2.4.45) divided by dt is calculated〈
df(x(t))

dt

〉
=

〈(
A(x, t) + B(x, t)

dW (t)

dt

)
∂f(x(t))

∂x

〉
(2.4.46)

+

〈
1

2
B(x, t)2 (dW (t))2

dt

∂2f(x(t))

∂x2

〉
.

From the properties of W (t), it follows that
〈

dW (t)
dt

= 0
〉

and
〈

d2W (t)
dt

= 1
〉

and Eq. (2.4.46) is reduced to〈
df(x(t))

dt

〉
=

〈
(A(x, t)

∂f(x(t))

∂x

〉
+

〈
1

2
B(x, t)2 ∂2f(x(t))

∂x2

〉
. (2.4.47)

The mean of f(x(t)) can as well be expressed in integral form

〈f(x(t))〉 =

∫
f(x(t)) p(x, t|x0, t0)dx (2.4.48)
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where p(x, t|x0, t0) is the conditional probability distribution function. The

total derivative of Eq. (2.4.48) is〈
df(x(t))

dt

〉
=

d

dt
〈f(x(t))〉 (2.4.49)

=
d

dt

∫
f(x(t)) p(x, t|x0, t0)dx

=

∫
∂

∂t
(f(x(t)) p(x, t|x0, t0)) dx

=

∫
f(x(t))

∂

∂t
p(x, t|x0, t0) dx.

Using Eq. (2.4.47), the integral can be written as (see Gardiner [1983])∫
f(x(t))

∂

∂t
p(x, t|x0, t0) dx

=

∫ (
(A(x, t)

∂f(x(t))

∂x
+

1

2
B(x, t)2 ∂f(x(t))

∂x
p(x, t|x0, t0)

)
dx. (2.4.50)

Integration of the right-hand side by parts eliminates the derivations of f(x)

and yields∫
f(x(t))

∂

∂t
p(x, t|x0, t0) dx

=

∫ (
− ∂

∂x
(A(x, t) p(x, t|x0, t0)) (2.4.51)

+
1

2

∂2

∂x2

(
B(x, t)2 p(x, t|x0, t0

))
f(x) dx.

However, f(x) is an arbitrary function, so Eq. (2.4.50) is equal to

∂

∂t
p(x, t|x0, t0) = − ∂

∂x
(A(x, t) p(x, t|x0, t0)) (2.4.52)

+
1

2

∂2

∂x2

(
(B(x, t)2 p(x, t|x0, t0)

)
which is a Fokker-Planck equation for the conditional probability p(x, t|x0, t0).

The stochastic process x(t) is determined equivalently by the Fokker-Planck

equation (2.4.52) or the stochastic differential equation (2.4.39). For the

n-dimensional case, the Fokker-Planck equation reads

∂

∂t
p(~x, t| ~x0, t0) = −

n∑
i=1

∂

∂xi

(Ai(~x, t) p(~x, t| ~x0, t0)) (2.4.53)

+
1

2

n∑
i,j=1

∂2

∂xi xj

(
(B(~x, t) BT (~x, t))ij p(~x, t| ~x0, t0)

)
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where BT is the transpose of matrix B. Setting n = 3, ~A = (u, v, w),

1
2
BBT =

 Ax 0 0

0 Ay 0

0 0 ν ′

 and p(~x, t| ~x0, t0) = C(~x, t) the Fokker-Planck

equation becomes

∂C

∂t
+∇ · (~u C) =

∂2

∂x2
(Ax C) +

∂2

∂y2
(Ay C) +

∂2

∂z2
(ν ′ C) (2.4.54)

which is similar to the three-dimensional advection-diffusion equation (2.2.37)

∂C

∂t
+∇ · (~u C) =

∂

∂x

(
Ax

∂C

∂x

)
+

∂

∂y

(
Ay

∂C

∂y

)
+

∂

∂z

(
ν ′

∂C

∂z

)
. (2.4.55)

The apparent difference between both equations (at the right-hand side) and

its meaning for modelling diffusion with the Fokker-Planck equation (2.4.54)

will be discussed in the next section.

2.4.2.3 Modelling diffusion with random walk

A random walk model consisting of a large number of statistically indepen-

dent steps is suitable to represent the chaotic nature of turbulent diffusion.

The size of the diffusive step is determined by the stochastic differential

equation (2.4.35) whose unknown quantities have been determined in the

last section as

~A(~x, t) = (u(~x, t), v(~x, t), w(~x, t)) (2.4.56)

B =


√

2 Ax 0 0

0
√

2 Ay 0

0 0
√

2 ν ′

 . (2.4.57)

Now, it is possible to write down Eq. (2.4.40) as follows

d~x(t) =

 u(~x, t)

v(~x, t)

w(~x, t)

 dt +


√

2 Ax 0 0

0
√

2 Ay 0

0 0
√

2 ν ′


 Z1

Z2

Z3

√dt,

(2.4.58)

where Z1, Z2, Z3 are independent random numbers from the standard normal

distribution with zero mean and unit variance. Unfortunately, modelling

turbulent diffusion with the Fokker-Planck equation is not realistic. Visser



CHAPTER 2. THEORY 34

[1997] showed that the random walk model based on Eq. (2.4.58) omitting

the advective part, discretised as

xn+1 = xn + Z1

√
2 Ax(~xn) ∆t (2.4.59)

yn+1 = yn + Z2

√
2 Ay(~xn) ∆t (2.4.60)

zn+1 = zn + Z3

√
2 ν ′(~xn) ∆t (2.4.61)

tends to accumulate particles in regions of low diffusivity. Rewriting the

Fokker-Planck equation (2.4.54) without the drift part gives

∂C

∂t
=

∂2

∂x2
(Ax C) +

∂2

∂y2
(Ay C) +

∂2

∂z2
(ν ′ C)

⇔ ∂C

∂t
=

∂

∂x

(
Ax

∂C

∂x

)
+

∂

∂y

(
Ay

∂C

∂y

)
+

∂

∂z

(
ν ′

∂C

∂z

)
(2.4.62)

+
∂

∂x

(
∂Ax

∂x
C

)
+

∂

∂y

(
∂Ay

∂y
C

)
+

∂

∂z

(
∂ν ′

∂z
C

)
.

The terms ∂
∂x

(
∂Ax

∂x
C
)
, ∂

∂y

(
∂Ay

∂y
C
)

, ∂
∂z

(
∂ν′

∂z
C
)

on the right-hand side which

occur - in comparison to advection-diffusion Eq. (2.2.37) - additionally,

represent an actual flux from areas of negative diffusivity curvature (i.e. a

maximum in a diffusivity profile) to areas of positive diffusivity curvature

(i.e. a minimum in a diffusivity profile) so that unrealistic un-mixing oc-

curs. To remove this inconsistency, Hunter et al. [1993] added non-random

advective components to the random walk scheme

xn+1 = xn +
∂Ax(~xn)

∂x
∆t + Z1

√
2 Ax(~xn) ∆t (2.4.63)

yn+1 = yn +
∂Ay(~xn)

∂y
∆t + Z2

√
2 Ay(~xn) ∆t (2.4.64)

zn+1 = zn +
∂ν ′(~xn)

∂z
∆t + Z3

√
2 ν ′(~xn ∆t. (2.4.65)

The additional terms represent a flux from areas of negative diffusivity cur-

vature to areas of positive diffusivity curvature (as it would be expected

from a given diffusivity profile) and the numerical scheme (2.4.63)-(2.4.65)

simulates turbulent diffusion corresponding to the situation described by

the Fickian diffusion equation (2.2.37) without the physically unrealistic un-

mixing tendency.
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2.4.2.4 Implementation

The random walk model implemented into GETM and GOTM is based on

the scheme proposed by Hunter et al. [1993]. A diffusive step is carried out

each macro time step ∆t for the internal mode of GETM and the particle

position is updated according to (2.4.63)-(2.4.65) with a slight modification:

the random numbers Z1, Z2, Z3 are not taken from the standard normal

distribution but from a uniform distribution with zero mean and a variance

of 1
3

(i.e. the uniform random numbers vary between +1 and −1). According

to the Lindeberg-Feller central limit theorem (Feller [1935]) the distribution

of a normal form variate

Znorm =
Z√

〈(Z − 〈Z〉)2〉
, (2.4.66)

where Z is a random variable with zero mean and finite variance 〈(Z − 〈Z〉)2〉,
tends to the normal distribution with zero mean and unit variance N (0, 1).

In order to include Znorm = Z/
√

1/3 the random walk model (2.4.63)-

(2.4.65) becomes

xn+1 = xn +
∂Ax(~xn)

∂x
∆t + Z1

√
6 Ax(~xn) ∆t (2.4.67)

yn+1 = yn +
∂Ay(~xn)

∂y
∆t + Z2

√
6 Ay(~xn) ∆t (2.4.68)

zn+1 = zn +
∂ν ′(~xn)

∂z
∆t + Z3

√
6 ν ′(~xn) ∆t. (2.4.69)

In the application of the random walk model to the Wadden Sea, horizon-

tal diffusion is not included. The horizontal diffusivities Ax, Ay are set to

zero since the shear dispersion (combination of vertical mixing and shear)

is the major horizontal dispersion mechanism. The vertical diffusivity ν ′ is

calculated by the turbulence model using the Kolmogorov-Prandtl relation

(Burchard and Bolding [2002])

ν ′ = c
′

µ

k2

ε
. (2.4.70)

Here, k is the turbulent kinetic energy, ε is the dissipation rate, and c
′
µ is a

so-called stability function depending on shear, stratification and turbulent

time scale, τ = k/ε. The vertical eddy diffusivity is located on the Eulerian

grid at the position of the vertical velocity component w. Therefore it is

easy to linearly interpolate ν ′ to the instantaneous vertical position zn of a

tracer in the grid box with index (i, j, k) and update the position according
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to the discretised formulation of Eq. (2.4.69)

zn+1 = zn +
ν ′(i, j, k)− ν ′(i, j, k − 1)

h(i, j, k)
∆t + Z3

√
6 ν ′(zn) ∆t (2.4.71)

where h(i, j, k) is the depth of the kth layer at the horizontal position de-

noted by (i, j) on the model grid.
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Chapter 3

Idealised testcases

This chapter deals with the idealised computer simulations which have been

conducted to understand the Lagrangian advection and diffusion algorithms

and to guarantee the proper implementation into GOTM and GETM.

3.1 2D: Horizontal advection

As a first test of the advection algorithm, a simple two-dimensional test case

has been developed. The advection algorithm has been implemented as a

stand-alone model and simulations have been carried out with one particle

being transported in a stationary velocity field. In addition, the Runge-

Kutta method has been used to model advection.

3.1.1 Model setup

The model domain is a square of length L = 100 m which ranges from

[−50 m, 50 m] in both directions. The grid spacing is ∆x = ∆y = 1 m and

the temporal resolutions for the advection model are chosen as ∆t = 0.001 s

and ∆t = 0.01 s, respectively. The stationary velocity field depends on x and

y and the components of the velocity vector are calculated on an Arakawa

C-grid according to

u(x, y) =
1

2
ω · x + ω · y (3.1.1)

v(x, y) = −ω · x− 1

2
ω · y (3.1.2)

where ω = 2π
s is the angular velocity. In this velocity field, a particle moves

clockwise on a closed path which has the form of an ellipse (see Appendix
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A). To exemplarily show the difference between the analytical advection

scheme and a numerical discretisation method, the fourth order Runge-

Kutta method is implemented additionally to model the advection equation.

The fourth order Runge-Kutta method is often used to numerically solve or-

dinary differential equations and is considered to provide a good balance of

power, precision and simplicity to program. It uses four evaluations of u, v

during a time step ∆t (Press et al. [1996])

u1 = u(xn, yn) v1 = v(xn, yn) (3.1.3)

u2 = u(x +
1

2
∆t u1, y +

1

2
∆t v1) v2 = v(x +

1

2
∆t u1, y +

1

2
∆t v1) (3.1.4)

u3 = u(x +
1

2
∆t u2, y +

1

2
∆t v2) v3 = v(x +

1

2
∆t u2, y +

1

2
∆t v2) (3.1.5)

u4 = u(x + ∆t u3, y + ∆t v3) v4 = v(x + ∆t u3, y + ∆t v3) (3.1.6)

and updates the particle position as follows

xn+1 = xn +
1

6
∆t (u1 + 2 u2 + 2 u3 + u4) +O(∆t)5 (3.1.7)

yn+1 = yn +
1

6
∆t (v1 + 2 v2 + 2 v3 + v4) +O(∆t)5 (3.1.8)

where O(∆t)5 is the order of the truncation error. The initial position of the

particle is x0 = y0 = 10 m and the simulations are carried out for a period

of 1.15 s which is approximately the time a particle needs to perform one

complete revolution.

3.1.2 Results

The computed trajectories for the analytical and the Runge-Kutta method

are shown in Fig. (3.1.2) together with the exact orbit according to the

analytical solution (A.0.15). It is apparent that the particle path, calculated

by the analytical method with respect to crossing of cell boundaries during

a time step ∆t, is independent of the size of the time step. In contrast to

that, the particle positions obtained from the Runge-Kutta method become

more inaccurate as the time step is increased. Of course, the precision of

the Runge-Kutta method can be improved by applying correction methods

such as the adaptive step size algorithm, but this will not be discussed here

any further.
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Fig. 3.1.1: Velocity field for the two-dimensional advection case.
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Fig. 3.1.2: Particle trajectories computed from the analytical and the Runge-
Kutta algorithm for two different time steps ∆t = 0.001 s and ∆t = 0.01 s.

3.2 1D: Vertical sediment transport

In this section results are presented from modelling sediment suspension and

transport with GOTM in a one-dimensional water column (z-direction). To

compute the vertical sediment profile, a Eulerian scheme and the random

walk model are used. The results are compared with the analytical solution



CHAPTER 3. IDEALISED TESTCASES 40

of the advection-diffusion equation for sediment. The simulations are carried

out under idealised conditions. To simplify the momentum equation rota-

tional and viscous effects are neglected. The pressure gradient is constant

over the whole water column resulting in a shear stress decreasing linear

towards the surface. Under these conditions, the momentum equation, the

relation of Kolmogorov and Prandtl, the k-equation and the ε-equation form

a closed system of equations (Burchard et al. [1999])

νt
∂u

∂z
= (ub

∗)
2
(
1− z

D

)
(3.2.1)

L(z) = κ(z + z0)
(
1− z

D

) 1
2

(3.2.2)

P = ε (3.2.3)

νt = c0
µ

√
kL (3.2.4)

where z0 is the roughness length, D is the water depth and ub
∗ denotes the

bottom friction velocity. With u(z = 0) = 0, the analytical solution of the

system of equations (3.2.1) - (3.2.4) for momentum is the log-law

u(z)

u∗
=

1

κ
ln

(
z + z0

z0

)
. (3.2.5)

The solution for the turbulent kinetic energy k is a linearly decreasing profile

towards the surface,

k(z) =

(
ub
∗

c0
µ

)2 (
1− z

D

)
, (3.2.6)

such that the result for the eddy viscosity is a parabolic profile

νt(z) = κub
∗(z + z0)

(
1− z

D

)
. (3.2.7)

3.2.1 The Rouse profile

Transport of sediment grains in the vertical is described by the advection-

diffusion equation

∂CSed

∂t
+ (w − wSed)

∂CSed

∂z
=

∂

∂z

(
(DSed + ν ′t)

∂CSed

∂z

)
(3.2.8)

where wSed is the fall velocity of sediment particles and DSed, ν ′t are the

coefficients of molecular diffusion of sediment and eddy diffusivity, respec-

tively. The solution of Eq. (3.2.8) can be obtained by neglecting molec-

ular diffusion and taking into account that in a steady state dCSed/dt =
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∂CSed/∂t + w ∂CSed/∂z = 0 so that Eq. (3.2.8) reduces to

∂

∂z

(
ν ′t

∂CSed

∂z
+ wSed CSed

)
= 0

⇔ ν ′t
∂CSed

∂z
+ wSed CSed = const. = 0. (3.2.9)

Eq. (3.2.9) represents a balance between the rate of settling wSed CSed

and the rate of turbulent diffusion ν ′t ∂CSed/∂z. Integration of the balance

equation results in the expression for the concentration profile C(z), first

derived by Hunter Rouse (Rouse [1937])

C(z) = Ca exp

(
−wSed

∫ z

a

1

ν ′t
dz

)
(3.2.10)

where Ca is the reference concentration at the arbitrary level za which is

usually chosen to be close to the sediment bed. The reference concentration

Ca has to be known for the calculation of the concentration profile. It is

assumed that the eddy diffusivity ν ′t is proportional to the eddy viscosity νt

and can be calculated from

ν ′t =
νt

σt

(3.2.11)

where σt ≈ 0.7 is the constant Prandtl number. The sediment profile (3.2.10)

with respect to (3.2.7) and (3.2.11) is

C(z) = C0 exp

(
−σt

wSed

κu∗b

∫ z

z0

1

(z + z0)
(
1− z

D

) dz

)
(3.2.12)

= C0 exp

(
−σt

wSed

κu∗b
ln

(
z + z0

z0

D − z0

D − (z + zc)

))
.

The reference concentration C0 is computed at the roughness length at the

bottom z0

z0 = 0.1
ν

ub
∗

+ 0.03hb
0 (3.2.13)

where ν is the eddy viscosity and hb
0 represents the height of the bottom

roughness elements. Following Smith and McLean [1977], the bottom sedi-

ment concentration C0 is a function of the bottom friction velocity and the

critical friction velocity uc
∗ (at which sediment particles begin to go into

suspension)

C0 = γ1

(
ub
∗

uc
∗

)2
[
1−

(
uc
∗

ub
∗

)2
]

(3.2.14)

where γ1 = 1.56 · 10−3 is a constant. The steady state solution (3.2.12) is

the so-called Rouse profile and wSed/(κu∗b) is the Rouse number.
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3.2.2 Model setup

The water column has a depth of D = 10 m and is divided into 100 equidis-

tant intervals hk. The indexing is upwards with k = 1 for the bottom layer

and k = N = 100 for the surface layer. The time step is chosen to be

dt = 10 s and the simulation time is 12 hours in order to obtain quasi sta-

tionary profiles. The vertical transport of sediment is only due to settling

of sediment particles and the turbulent diffusion

∂C

∂t
− ∂

∂z
(ws C + ν ′t

∂

∂z
C) = 0. (3.2.15)

In GOTM, the diffusive transport and the fall of sediment grains are treated

separately from each other. For the diffusive transport, the layer integrated

diffusion equation (3.2.15) is used (Burchard and Bolding [2002])∫ k

k−1

∂C

∂t
− ∂

∂z
(ν ′t

∂C

∂z
)dz = 0

⇔ ∂hkC

∂t
−
(

ν ′t
∂C

∂z

) ∣∣∣∣
k

+

(
ν ′t

∂C

∂z

) ∣∣∣∣
k−1

= 0. (3.2.16)

At the surface and at the bottom, the Neumann-type boundary conditions

are(
ν ′t

∂C

∂z

) ∣∣∣∣
k=N

= Fs = 0 (3.2.17)

and(
ν ′t

∂C

∂z

) ∣∣∣∣
k=0

= −Fb (3.2.18)

where Fb and Fs are the turbulent boundary fluxes. The semi-implicit dis-

cretisation of (3.2.16) is written as follows:

hn+1
N Cn+1

N − hn
NCn

N

∆t
+ νn

N−1

Cn+λ
N − Cn+λ

N−1
1
2
(hn+λ

N − hn+λ
N−1)

= 0; k = N (3.2.19)

hn+1
k Cn+1

k − hn
kC

n
k

∆t
− νn

k

Cn+λ
k+1 − Cn+λ

k
1
2
(hn+λ

k+1 − hn+λ
k )

(3.2.20)

+ νn
k−1

Cn+λ
k − Cn+λ

k−1
1
2
(hn+λ

k − hn+λ
k−1 )

= 0; 1 < k < N
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hn+1
1 Cn+1

1 − hn
1C

n
1

∆t
− νn

1

Cn+λ
2 − Cn+λ

1
1
2
(hn+λ

2 − hn+λ
1 )

− Fb = 0; k = 1 (3.2.21)

with

Cn+λ
k = λCn+1

k + (1− λ)Cn
k (3.2.22)

and

hn+λ
k = λhn+1

k + (1− λ)hn
k . (3.2.23)

Here, upper indices denote time levels and lower indices stand for the vertical

discrete location. The Crank-Nicholson parameter is λ, such that for λ = 0

a fully explicit, for λ = 1 a fully implicit scheme and for λ = 0.5 the Crank-

Nicholson second-order in time scheme is obtained. This numerical scheme

leads to a system of linear equations in the form of a matrix equation.

The tridiagonal matrix of this equation is solved by means of the simplified

Gaussian elimination. The constant fall of sediment is modelled by using a

directional splitting method (i.e. applying a 1-D scheme in one direction at a

time) and a Total Variation Diminishing (TVD) advection scheme (Pietrzak

[1998], see Burchard and Bolding [2002] for details).

3.2.2.1 Modelling sediment suspension

For parameterisation, the sediment has a density of ρSed = 2650 kg/m3 and

the sediment particles are assumed to be sphere-like with a diameter of

d = 62.5 · 10−6 m, a volume of V = 4/3π(d/2)3 = 1.28 · 10−13 m3 and a mass

of m = 3.3875 · 10−10 kg. The fall velocity ws for sphere-shaped particles is

calculated using the equation proposed by Zanke (Zanke [1977])

ws = 10
ν

d

(√
1 +

0.01 g′ d3

ν2
− 1

)
(3.2.24)

where ν is the molecular viscosity of water and g′ is the reduced gravity

g′ = g
ρSed − ρ0

ρ0

(3.2.25)

with ρ0 being the standard reference density. First, the Rouse profile is

computed with the semi-implicit Eulerian scheme for diffusion and the TVD

scheme for advection in order to obtain the steady-state concentration of

suspended sediment. After a simulation time of 12 hours, the total sedi-

ment concentration is Ctotal = 1.87 · 10−2 kg/m3. This equals a number of



CHAPTER 3. IDEALISED TESTCASES 44

55, 472, 000 sediment particles suspended in the water column. The random

walk model uses a number of 554, 720 tracers, each of them representing a

load of sediment (not a sediment particle!) lSed = 3.3875·10−8 kg to compute

the Rouse profile. Initially, all tracer particles are located at the sediment

bed and their vertical position is updated with respect to turbulent diffusion

and settling as

zn+1 = zn +
νn

k − νn
k−1

hk)
∆t + Z

√
6 νn(zn) ∆t− ws ∆t (3.2.26)

where Z is a uniform random number with zero mean and a variance of 1/3.

To show the difference between the correct random walk model (3.2.26) and

the physically wrong approach (2.4.61), another simulation is carried out

where the tracer positions are updated according to

zn+1 = zn + Z
√

6 νn(zn) ∆t− ws ∆t. (3.2.27)

At the end of a simulation with one of the random walk models, the number

of tracers in each layer is computed and multiplied by the load of sediment

lSed to obtain the stationary sediment profiles.

3.2.3 Results

The simulations are carried out for a period of 12 hours and the vertical pro-

files of u, k, ε, ν ′t, νt shown in Fig. 3.2.1a - 3.2.1d are in conformance with

the analytical solutions mentioned earlier. The turbulent kinetic energy k

decreases linearly towards the surface as the influence of the bottom friction

and the roughness of the sediment bed on the flow diminishes. The energy

dissipation rate increases towards the bed where the dissipation has its maxi-

mum in the bottom boundary layer. The vertical profiles of the viscosity and

the diffusivity are both parabolic and differ only by the constant factor σt.

The sediment profile calculated by the Eulerian scheme is in good agreement

with the analytical solution and shows a smooth exponential decrease with

depth (Fig. 3.2.2a). The vertical profile obtained with the correct random

walk model also reproduces the analytical solution, but shows small random

errors (Fig. 3.2.2b). In contrast to that, the physically unrealistic random

walk model tends to accumulate particles in areas of low diffusivity and leads

to an overestimation of the sediment concentration close to the bottom and

the surface as shown in Fig. (3.2.2c). The good agreement between the

Eulerian scheme, the correct random walk model and the analytical solution

is shown for ten different depths in Tab. 3.2.1.
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Fig. 3.2.1: Vertical profiles of a) the turbulent kinetic energy k, b) the energy
dissipation rate ε, c) the zonal velocity component u and d) the eddy diffusivity ν′

t

and viscosity νt.

Depth z [m] CSed,Euler[kg/m3] CSed,Lagrange[kg/m3] CSed,analytical[kg/m3]

−0.5 1.03 · 10−3 1.07 · 10−3 1.04 · 10−3

−1.5 3.69 · 10−4 3.59 · 10−4 3.62 · 10−4

−2.5 2.65 · 10−4 2.63 · 10−4 2.59 · 10−4

−3.5 2.13 · 10−4 2.14 · 10−4 2.09 · 10−4

−4.5 1.78 · 10−4 1.72 · 10−4 1.70 · 10−4

−5.5 1.51 · 10−4 1.49 · 10−4 1.47 · 10−4

−6.5 1.28 · 10−4 1.23 · 10−4 1.25 · 10−4

−7.5 1.07 · 10−4 1.05 · 10−4 1.05 · 10−4

−8.5 8.64 · 10−5 8.74 · 10−5 8.40 · 10−5

−9.5 6.28 · 10−5 6.41 · 10−5 6.10 · 10−5

Table 3.2.1: Sediment concentrations at ten different depths calculated by the
Eulerian scheme, the correct random walk model and the analytical solution.
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Fig. 3.2.2: Sediment profiles computed by three different models: a) semi-implicit
Eulerian scheme for diffusion and a TVD-scheme for advection, b) correct random
walk scheme according to Hunter et al. [1993], c) physically unrealistic random
walk mentioned by Visser [1997]

3.3 2D: Advection and diffusion - wind-driven

circulation

A test case has been conducted to simulate wind-driven circulation in a two-

dimensional, continuously stratified lake using GETM. First, the model is

run without the random walk algorithm in order to check the consistency

of the advection scheme implemented into GETM. In a second run, the

influence of turbulent diffusion on the particle path is included.
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3.3.1 Model setup

The lake covers a length of Lx = 2000 m and has a parabolic depth profile

with a maximum depth of D = 10 m at x = 1000 m. The domain has been

discretised using 101 grid points in x-direction with a grid spacing ∆x = 20 m

and 100 interface layers in the vertical using general vertical coordinates.

The simulations are carried out with a micro time step ∆tm = 1 s and a

macro time step ∆t = 10 s. As a forcing for the model, a constant wind stress

τx = 0.375 N/m2 is applied. After a simulation time of one hour, the lake is in

steady state equilibrium and a number of ten tracer particles is distributed

equidistantly over depth in the middle of the lake. The simulations are

carried out for another 23 hours and the particle paths are computed. For

the advection and the advection-diffusion simulations, the same starting

positions are used.

3.3.2 Results

In steady state equilibrium, the surface of the lake is slightly inclined to

the west due to wind forcing, and the surface elevation ζ is higher at the

east end of the lake where down-welling occurs (see Fig. 3.3.1a). The wind-

induced circulation pattern in the lake consists of a large gyre which causes

particles to move clockwise (see Fig. 3.3.1b). The vertical profiles for the

eddy diffusivity and viscosity are depicted in Fig. 3.3.1c and 3.3.1d for three

different positions along the length of the lake. All profiles have a parabolic

shape and their maximum value increases from both ends towards the middle

of the lake where diffusivity and viscosity have the most distinct profile. The

trajectories of all particles are closed for the pure advection case as shown

in Fig. 3.3.2a - 3.3.2c for three different starting positions. This leads to

the conclusion that the advection algorithm is implemented properly. For

the advection-diffusion case, the particle motions show a strong influence

of turbulence. The drift patterns calculated for the same starting positions

used for the advection case are depicted in Fig. 3.3.2d - 3.3.2f.
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Fig. 3.3.1: Shown here is a) the sea surface elevation ζ along the length of the lake,
b) the circulation pattern in the lake described by the velocity field, the vertical
profiles of c) the eddy diffusivity ν′

t and d) the eddy viscosity νt at three different
positions along the length of the lake.
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Fig. 3.3.2: Particle paths in a lake for three different vertical starting positions.
The figures on the left side show the computed trajectories for the advection case
and the figures on the right show the influence of turbulent diffusion on particle
motions. The red dot marks the starting position of the particles and the green
dot marks the position at the end of a model run. The particles in a) and d), b)
and e), c) and f) have the same starting position.
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Chapter 4

Realistic application

4.1 The model setup

4.1.1 The model domain

The Wadden Sea of the North Sea extends along a 500 km stretch between

the Dutch Den Helder and the Danish Esbjerg with usually more than 10

km of width and a total area of about 9,300 km2 (including islands). It

is the largest coastal wetland in Europe consisting of mudflats, sandflats,

saltmarshes and 23 barrier islands with sand dunes. The topography of the

Wadden Sea is highly dynamic and geomorphologic processes working at all

conceivable time and space scales result in a constantly changing landscape.

About 4,500 km2 of this area falls dry and gets flooded again twice a day

by the tide through a system of tideways, channels and shipping channels

between the islands. The major part of the Wadden Sea can be described

as a mesotidal area with a tidal range between 1.4 m (Den Helder) and 3.5

m (Wilhelmshaven). The size of the barrier islands decreases towards areas

with a tidal range greater than 2.9 m (inner German Bight) (QSR 1993).

Approximately 56 % of the Wadden Sea stretches along the German Bight

ranging from the island Borkum in front of the East Frisian coast to the

island Sylt in front of the North Frisian coast as depicted in Fig. 4.1.1.

The area under investigation is located in the German part of the Wadden

Sea region indicated by the square frame in Fig. 4.1.1. The model domain

consists of the two islands Baltrum and Langeoog, the backbarrier basin

between these islands and the East Frisian coast and a part of the open sea

to the north of the islands (see Fig. 4.1.2). During the flooding phase North

Sea water enters the model domain from the west and is transported into the

basins through the narrow inlet Accumer Ee with speeds exceeding 1 m/s.
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Atotal [m2] · 106 88.56

Ah [m2] · 106 88.56

Al [m2] · 106 41.38

Dh [m] 2.91

Dl [m] 1.89

Vh [m3] · 106 257.29

Vl [m3] · 106 82.60

∆V [m3] · 106 174.69

Table 4.1.1: Volumes, areas, mean depths and tidal prism under spring tide
conditions for the Langeoog basin. All values were calculated for the first day of
the tidal forcing (19th May 2000). Atotal is the area of the basin without islands
and coast, Ah and Al are the areas covered with water at maximum flood and
maximum ebb, respectively. Vh and Vl are the volumes corresponding to Ah and
Al. The tidal prism is denoted by ∆V .

The open ocean water fills the basin through the tidal channel and thereby

gets mixed with coastal water masses from the last ebb phase and fresh

water from Dornumer- and Bensersiel. During the ebb phase the mixed water

masses leave the basin again through the inlet and most of the basin falls dry.

With a horizontal resolution of 200 m, the topography of the model domain is

more clearly identified in Fig. (4.1.3). The topographic map was created by

Gerhard Geyer from the Institute for Coastal Research at the GKSS research

centre using data from the Federal Waterways Engineering and Research

Institute (BAW). The measuring points were separated by distances between

250 m at seaward locations and 20 m inside the channel between the two

islands. In order to produce a map with a horizontal resolution of 200 m×200

m all gaps in the values were filled without additional map material. The

total area covers 237.12·106 m2 with a number of 76 grid points in x-direction

and 78 grid points in y-direction. The inter-tidal basin has a total area of

88.56 ·106 m2 (without islands and coast). Inside the basin, the topographic

height H ranges from 0.94 m above to −19.18 m below mean sea level with

a mean of −1.51 m (indicated by the dotted line in Fig. 4.1.3). During

maximum flood under spring tide conditions, the water covered area Ah in

the basin is equal to the total area with a mean depth Dh = 2.91 m. The

water volume is calculated as Vh = 257.29 · 106 m3. During low tide, the

water mass of the inner basin has a volume of Vl = 82.60 · 106 m3 covering

approximately half of the basin area with a mean water depth of Dl = 1.89

m (see Tab. 4.1.1).
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Fig. 4.1.1: The top left corner shows the North Sea, the location of the German
Bight is indicated by the square frame. The other part of the figure depicts the
German Bight in more detail. The model domain in the East Frisian Wadden Sea is
marked by the frame between the islands Baltrum and Langeoog. The topographic
map shows the area which becomes dry during ebb (darkest shading) and the area
which is always covered with water (lightest shading). (modified after Stanev et al.
[2003a])

4.1.2 The model forcing

The dominant physical driving forces in the Wadden Sea area are the tides,

wind and wind waves. In this study, the forcing of the model is only due to

the tides. Any effect of wind and wind waves is neglected.

The tide in the Wadden Sea area is dominated by the semi-diurnal lunar

tide (M2) with the well known period of 12.42 h (the latter often serves as

a unit of time, denoted by T ). The semi-diurnal solar tide (S2) gives rise to

the spring to neap tidal cycle. Spring tides are especially strong tides. They

occur when the earth, the sun, and the moon are in a line. The gravitational

forces of the moon and the sun both contribute to the tides. Spring tides

occur during the full moon and the new moon. Neap tides are especially

weak tides. They occur when the gravitational forces of the moon and the

sun are perpendicular to one another (with respect to the earth). Neap tides

occur during quarter moons.

For the model simulations, sea-level data from the operational model of
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Fig. 4.1.2: Satellite image of the East Frisian Wadden Sea between Norderney
and Spiekeroog. The model domain is indicated by the white frame. The inter-
tidal basin between Baltrum and Langeoog is connected to the adjacent North
Sea through the inlet Accumer Ee. The blue dots mark the areas of freshwater
inflow through Dornumer- and Bensersiel. The red line approximately marks the
transition from the shallow basin to the open Wadden Sea area. During the model
runs, this line is used to determine the time when a Lagrangian tracer particle
leaves the basin. The satellite image was taken from the web site of the GKSS
(http://w3k.gkss.de/data/dornum.html) and was modified to include the labels
of the islands, the inlet and the fresh water inflow.

the German Federal Maritime and Hydrographic Agency (Bundesamt für

Seeschiffahrt und Hydrogaphie, BSH) are chosen (Dick and Soetje [1990]).

The BSH-model is a three-dimensional prognostic model which simulates

the North Sea and Baltic Sea with a horizontal resolution of 10 km, and the

German Bight with a higher resolution of 1.8 km. The sea level data are

calculated from the tidal constituents of 14 partial tides. When prescribing

the boundary values for the sea surface elevation, the phase shift in the

tidal rise and fall due to the amphidromy in the southern North Sea has to

be taken into consideration. The tidal wave propagates through the North

Sea as a Kelvin wave, in this case in a counter-clockwise circular motion.

This leads to patterns of high and low tides rotating around amphidromic

points at which the tidal rise and fall is zero. Stanev et al. [2003a] performed

simulations for the whole East Frisian Wadden Sea with a model domain of

65 km length resulting in a phase shift of the tidal wave between the east

and west boundaries of approximately 50 min. The length of the model area

http://w3k.gkss.de/data/dornum.html
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Fig. 4.1.3: Shown is the topography of the model domain. Most parts of the
inter-tidal basin are shallower than −4 m. The mean topographic height inside the
basin (−1.51 m) is indicated through the dotted line.

under investigation in this study is 15.2 km. For simplicity’s sake, a linear

relationship is assumed between the phase shift Stanev et al. [2003a] has

applied and the phase shift for the length of the model area used in this

study. Subsequently, the phase shift for the Baltrum-Langeoog area is taken

to be 11.69 min.

In order to resolve this phase shift in the boundary values, two successive

sea-level values in the data set have been interpolated linearly in time to

yield a value with a lag of 11.69 min to the first value. These two values

were allocated to the two northern corner points of the model area. Between

these two values, a linear interpolation in space is carried out to obtain the

boundary values along the northern boundary. The surface elevation along

the western and eastern boundary is chosen to be the same as the first and

last boundary value of the northern boundary, respectively.

The tidal forcing consists of the sea surface data from 19th - 28th May 2000

(see Fig. 4.1.4).
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Fig. 4.1.4: Shown is the time series of the sea surface data used to force the
model on the open boundaries. The red and blue dots mark the time of maximum
ebb and flood current, respectively, on 19th May 2000.

4.2 Modelling the residence time of the Lan-

geoog basin

According to Zimmerman [1976] water residence times in estuaries and tidal

basins are influenced by any factor that affects water movement, including

freshwater inflow rates, tides, wind, mixing, stratification, and system to-

pography. Since many of these factors are variable, residence times are

also not static. This variability requires attention to the appropriate time

interval over which the residence time should be expressed, and the repre-

sentativeness of the conditions under which a given measurement is made.

A long-term (seasonal or annual) average residence time is often most ap-

propriate for the analysis of the effects of nutrients. Tides can be a major

factor controlling estuary-ocean exchange of water and therefore water resi-

dence time. Important factors are the tidal range, tidal frequency (diurnal

vs. semidiurnal) and basin depth. For a given area, residence times may

vary over the spring-neap tide cycle.

As a final application of the Lagrangian tracer model, the residence time

of the Langeoog basin is determined under realistic conditions taking into
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account the tidal forcing of the Wadden Sea.

4.2.1 Transport time scales in natural basins

In the following, a brief description of the transport time scales in natural

basins is given. In general, one has to distinguish between local and integral

time scales. Local time scales depend on the initial position of a water parcel

while integral time scales are obtained by averaging over the total number

of water parcels inside the basin at a certain moment. The latter one can

be derived from the first one but not vice versa.

The important time scales are

Age: Age is unique to each water parcel that enters a basin. It is defined

as the time a parcel has spent inside the basin since entering it through one

of the open boundaries (Zimmerman [1976]). Averaging over the ensemble

of parcels leads to the age of the water mass of the basin.

Residence time: The time a water parcel needs from an arbitrary start

location inside a basin to the outlet to the sea is called the residence time

(Zimmerman [1976]).

Transit time: The transit time is the time a water parcel needs from the

inlet to the outlet of a basin, thus it is the sum of age and residence time

(Zimmerman [1976]). The transit time is often used as an integral time scale

and compared with the mean age of the water parcels.

Flushing time: The flushing time is an integrative parameter. It charac-

terises the water exchange of a basin and is defined as the ratio of the water

volume of the basin to the flux through its boundaries. The mean flushing

time is often calculated as the time necessary to reduce the initial mass of la-

belled water parcels to a fraction 1/e (e being the Eulerian number ≈ 2.718)

(Monsen et al. [2002]). It can also be obtained from the tidal prism ∆V

when only basin geometry and tidal range information are available. The

approach assumes that tides exclusively flush the system. Flushing time

using this approach is (Dick and Schönfeld [1996])

τf =
V0

β ∆V
(4.2.1)

where V0 is the volume of the basin and β is a constant determined at 0.12

(Ridderinkhof et al. [1990]).

Turnover time: The turnover time is the spatial average of the residence

time over the basin (Deleersnijder and Tartinville [1998]).
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4.2.2 Numerical simulations

The residence time of the Langeoog basin is simulated by using GETM and

the implemented particle tracking model. A total number of four simulations

have been carried out, each of them starting either at maximum flood or

maximum ebb current. According to Ridderinkhof et al. [1990] the residence

time depends largely on the tidal phase at which the simulation is started

and on the initial volume at starting time. When examining transport time

scales, Ridderinkhof et al. [1990] proposes to start at mid-tide position which

corresponds to about the time of maximum ebb or flood current. All four

simulations start on 19th May, 2000 and the exact starting times are shown

in Fig. 4.1.4 and in Tab. 4.2.1. Each simulation is carried out over the full

period of the tidal forcing data and the residence time is calculated on the

last day of the tidal forcing (28th May, 2000). The tidal forcing is mainly

dominated by spring tide conditions, so that the results of the simulations

are only representative for this type of tidal forcing. The model domain is

initialised with a number of particles which represent the water volume in

the basin at starting time V0. The number of particles per grid box n(i, j, k)

is determined by its volume V (i, j, k) = ∆x ∆y h(i, j, k) in the following way

n(i, j, k) = int

(
V (i, j, k)

Vt

)
(4.2.2)

where Vt = 1000 m3 is the volume represented by one tracer particle in the

above equation. In order to even cover the basin areas with a volume smaller

than Vt a minimum value of n(i, j, k) = 2 is introduced. This means that

one particle is likely to account for a volume smaller than Vt. It should be

noted that even dry areas are initialised with particles and the residence

time is determined from the point on when these grid boxes are flooded

again. Throughout all simulations a macro time step ∆t = 40 s and a

micro time step ∆t = 8 s is used. The vertical domain is discretised using a

number of ten vertical layers. The drying and flooding parameter is chosen

in accordance with the Sylt-Rømø Bight test case developed by Burchard

and Bolding [2002], Dcrit = 0.2 m and Dmin = 0.05 m. To determine the

residence time τ ∗r of each tracer in the inter-tidal basin, they are labelled

according to their starting position. Each particle is tracked on its path

and its residence time is calculated as the time necessary to leave the basin

through one of the boundaries. The boundaries of the basin are the eastern

and western boundaries of the model domain while the northern boundary

is defined as the transition from the basin to the open Wadden Sea in the

inlet Accumer Ee located at y = 7000 m. Tracer particles leaving through
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one of the boundaries are not tracked any further and thus cannot enter the

domain again. At the end of each model run the mean residence time τr for

each grid box is computed by averaging over the residence time τ ∗r of the

particles it was initialised with. The mean residence time τr is obtained as

τr(i, j, k) =

n(i,j,k)∑
p=1

τ ∗r (i, j, k, p). (4.2.3)

By this means, the spatial distribution of the residence time in the basin is

calculated. Finally, the residence time maps obtained from all four simula-

tions are averaged to produce the mean residence time map. A similar study

has been carried out by Monsen et al. [2002] to determine the residence time

of Mildred Island, a shallow tidal lake in the Sacramento-San Joaquin River

Delta. Particles which are still inside the basin at the end of the simulations

are ascribed the model runtime as an estimate of their residence time τ ∗r .

In addition to the four simulations mentioned, a fifth run is carried out to

estimate the influence of turbulent diffusion on the spatial distribution of τr.

The initial conditions are chosen to be the same as for simulation one.

4.2.3 Results

The total number of particles within each water column Nt(i, j) =
∑N

k=1 n(i, j, k)

is shown exemplarily for the first run in Fig. 4.2.1. It is apparent that the

particle concentration is higher in the tidal channel and decreases towards

the shallow mud flats. The maximum total number of particles in a water

column varies throughout the simulations between 760 and 790. The ini-

tial conditions for each model run is shown in Tab. 4.2.1. In addition the

transport and the water depth in the model domain is shown in Fig. 4.2.3

and Fig. 4.2.4 for maximum ebb and maximum flood stream, respectively.

Simulation 1 is carried out under ebb tide conditions and the water leaves

the basin with a maximum transport through the deep, narrow inlet of ap-

proximately 12.66 m2/s while most of the transport inside the basin is less

than 1.15 m2/s. The water depth D at the beginning of the first simulation is

depicted in Fig. 4.2.3a. The lower part of the basin already shows tidal flats

which are dry while most of the basin has a water depth shallower than 2 m.

At the end of the simluation a number of 9665 particles is still inside the

basin. The corresponding particle distribution is shown in Fig. 4.2.2. The

majority of these particles are located in areas with a topographic height

less than 2 m in front of the coastline or in the shallow regions behind the

barrier islands. It should be stressed here, that these particles are not stuck

at horizontal or vertical boundaries but are still in movement.
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The vertically averaged residence time map computed from this model run

is shown in Fig. 4.2.5a. As would be expected, areas close to the open

boundaries of the basin are drained faster than areas closer to the coast.

Approximately 50% of the basin volume has a residence time shorter than 2

tidal periods. The residence time is increasing towards shallow regions where

the influence of the tidal channels diminishes. In addition to the depth aver-

age, the standard deviation of the residence time is calculated and presented

as a horizontal plot (see Fig. 4.2.6). The deviation from the mean is espe-

cially high in areas with a long residence time which leads to the conclusion

that the residence time is depending on the vertical coordinate. In order to

show this inhomogenity, the vertical distribution of the residence time along

transects across the basin in x- and y-direction, respectively, is displayed in

Fig. 4.2.7a and b. The transects are located at y = 4000 m (Fig. 4.2.7a) and

at x = 8000 m (Fig. 4.2.7b). The heterogeneity is higher in shallow areas

and decreases towards the deeper parts of the basin. At certain locations

the difference between the minimum and maximum residence time ranges

up to 6 tidal periods.

The initial conditions for the second simulation are depicted in Fig. 4.2.4.

They can be clearly identified as ebb tide conditions. Again, the maximum

transport occurs in the inlet of the basin (12.66 m2/s). The distribution of

the water depth shows that still some of the mud flats are dry. The residence

time map created from this run is shown in Fig. 4.2.5b. The result is not

too different from the first simulation. Once more, it can be seen that in the

shallow regions the residence time strongly depends on the vertical position

in the basin by looking at the standard deviation (see Fig. 4.2.6b). The

vertical distribution is similar to the inhomogenity from the first simulation

and thus is not discussed any further.

The results from simulation 3 and 4 confirm the results from the first and

second run, respectively. Therefore a detailed discussion is not necessarily

required.

Finally, the mean residence time map is computed from the results of all

four model runs. The distribution of the mean residence time is depicted

together with the standard deviation in Fig. 4.2.9.

In a fifth simulation, the influence of the turbulent diffusion on the residence

time of the tracer particles τ ∗r is analysed. This experiment is carried out

under the same initial conditions as for the first model run, but in this sim-

ulation, the turbulent diffusion is not included in the model and transport

is only due to advection. While the horizontal distribution of the residence

time is similar to the experiments including diffusion, there is a significant

difference in the vertical distribution. Exemplarily, the heterogeneity of the
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starting time starting conditions ntotal V0 Vt

Simulation 1 19th May 2000, 2:15 am max. ebb current 153520 141.65 922.66

Simulation 2 19th May 2000, 8:07 am max. flood current 179140 170.47 951.60

Simulation 3 19th May 2000, 2:21 pm max. ebb current 155190 143.25 923.07

Simulation 4 19th May 2000, 8:29 pm max. flood current 176320 167.18 948.15

Table 4.2.1: Initial conditions for the simulations carried out to determine the
residence time of the Langeoog basin. The total number of tracer particles used to
label the volume of the water masses in the basin V0 is denoted by ntotal. Vt is the
volume one tracer particle accounts for.

residence time is shown for the same cross sections used for simulation 1.

In contrast to the cross sectional plots from the first simulation (see Fig.

4.2.7a), the residence time increases with decreasing depth such that grid

boxes close to the bottom have a longer residence time than grid boxes above.

This distinct layering which can best be seen in the deeper tidal channels

of the basin is shown in detail in Fig. 4.2.8. Thus, it can be concluded,

that vertical turbulent diffusion is an important parameter, which cannot

be neglected when modelling time scales in shallow water sea areas.

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x [km]

y 
[k

m
]

N
t
(i,j)

760

20

Fig. 4.2.1: Initial horizontal particle distribution Nt(i, j) for simulation 1 under
ebb tide conditions. Since initialisation is done under consideration of the volume
of the grid boxes, the maximum value of Nt(i, j) is in the deeper part of the inlet.
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Fig. 4.2.2: Shown is the tracer distribution at the end of the first simulation after
≈ 18 tidal periods. A total number of 9665 particles still resides in the basin. The
majority of the particles is located in the shallow regions oft the basin, while the
tidal channel is completely depleted of particles.
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Fig. 4.2.3: a) Water depth and b) transport at the start of simulation 1 under
ebb tide conditions. As the basin is drained of water through the tidal channels
and the open boundaries to the east and west, the mud flats begin to fall dry. The
maximum transport of water is observed in the deeper parts of the basin between
the islands. The transport in the shallow regions of the basin is less than 1.15 m2/s.
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Fig. 4.2.4: a) Water depth and b) transport at the start of simulation 2 under
flood tide conditions. Water masses are entering the basin through the inlet and
the open boundaries. The maximum transport of water is observed in the deeper
parts of the basin between the islands.
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Fig. 4.2.5: Shown is the vertical mean of the residence time τr under a) ebb
tide conditions and b) flood tide conditions. Both maps are not too different from
each other. The residence time is higher in shallow areas and tends to a minimum
towards the open boundaries.
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Fig. 4.2.6: Shown is the standard deviation of the residence time τr under a) ebb
tide conditions and b) flood tide conditions. Both maps are not very different from
each other. The standard deviation is higher in shallow water areas with a high
residence time.
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Fig. 4.2.7: Shown is the vertical distribution of the residence time along two
transects located at a) y = 4000 m and b) x = 8000m for simulation 1. The
heterogeneity is higher in shallow areas and decreases towards the deeper parts of
the basin. At certain locations the difference between the minimum and maximum
residence time ranges up to 6 tidal periods.
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Fig. 4.2.8: Shown is the vertical distribution of the residence time along two
transects located at a) y = 4000 m and b) x = 8000 m for a simulation in which
turbulent diffusion is neglected. In contrast to Fig. 4.2.7 the vertical distribution
shows signs of layering, such that the residence time increases continuously with
depth.
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Fig. 4.2.9: Map of the vertically averaged residence time and its standard devia-
tion computed from all simulations. The result is very similar to the maps obtained
from the single simulations.
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Chapter 5

Summary and outlook

In this study, it was shown how a Lagrangian particle tracking model was

implemented into the General Estuarine Transport Model (GETM). The

numerics and the physics of the transport model (GETM) were introduced

in chapter two together with the advection-diffusion equation and the way

it was implemented as a Lagrangian transport model.

In chapter three, the results from the idealised test cases were presented.

These test cases ranged from a simple two-dimensional rotation to one- and

two-dimensional test cases carried out with GETM and GOTM under ide-

alised conditions.

Finally, the spatial distribution of the residence time in the Langeoog basin

was computed with the Lagrangian tracer model. This was achieved by time

averaging over four simulations which were carried out within the first day of

the time series of the tidal forcing. The averaging was carried out to include

both, the influence of the maximum ebb and flood current. Each of the four

simulations was carried out with a number of tracer particles representing

the initial water volume in the basin. It turned out that the residence time

is strongly depending on spatial position. The vertical heterogeneity of the

residence time was exemplarily shown and the difference between a model

run only with advection and one with advection and diffusion was described.

As an outlook, the work with the Lagrangian tracer model is not finished.

I will continue to update it in order to make it releasable at some point

in the future. An application of the Lagrangian particle tracking model

will be carried out by Hans Burchard and Karsten Bolding as a part of the

OCEANIDES project (http://intelligence.jrc.cec.eu.int/oceanides/-

oceanides.html). The OCEANIDES project aims to improve considerably

the monitoring of European seas of illicit marine oil pollution. It is one of

http://intelligence.jrc.cec.eu.int/oceanides/oceanides.html
http://intelligence.jrc.cec.eu.int/oceanides/oceanides.html
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their aims to apply a state-of-the-art dispersion model in combination with

an environmental impact assessment model to determine the fraction of oil

that is most likely to reach environmentally sensitive areas and the scale of

their environmental impact.
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Appendix A

Appendix to Section 3.1.1

In this section the analytical solution of the tracer trajectories in the velocity

field used for the test case in section 3.1 is derived.

The two-dimensional velocity field is defined by the components u, v of the

velocity vector ~v according to

u = cx + ωy (A.0.1)

v = −ωx− cy . (A.0.2)

Here, x and y are the dimensions in space, ω is the angular velocity 2π
s

and

c = 1
2
ω is a constant. The trajectory of a particle being advected in the

velocity field above can be described by the following differential equation

tan α =
dy

dx
=

v

u
=
−ωx− cy

cx + ωy
, (A.0.3)

where α denotes the angle between ~v and the positive x-axis, so that tan α is

the gradient in each point of a trajectory in the velocity field (see Fig. A.0.1).

To solve (A.0.3), it is rewritten as a homogeneous differential equation dy
dx

=

f( y
x
)

dy

dx
=
−ω − c y

x

c + ω y
x

(A.0.4)

and a substitution is carried out by introducing z(x) = y
x

with dy
dx

= z+x dz
dx

.

Hence, (A.0.4) becomes

z + x
dz

dx
=
−ω − cz

c + ωz
. (A.0.5)

In a next step, the variables x, z of (A.0.5) are separated

dx

x
=

c + ωz

−ω − 2cz − ωz2
dz (A.0.6)
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α

Fig. A.0.1: Illustration of the x,y-coordinate system, the velocity vector ~v with
its components u, v and the gradient angle α.

and both sides of the equation are integrated∫
dx

x
= −1

2

∫
−c− ωz

−1
2
ω − cz − 1

2
ωz2

dz (A.0.7)

⇔ ln |x| = −1

2
ln

∣∣∣∣−1

2
ω − cz − 1

2
ωz2

∣∣∣∣+ C1

⇔ ln

∣∣∣∣∣C2x

√
−1

2
ω − cz − 1

2
ωz2

∣∣∣∣∣ = 0

⇔ C2x

√
−1

2
ω − cz − 1

2
ωz2 = 1

⇔ −1

2
ωx2 − czx2 − 1

2
ωz2x2 =

1

C3

.

The back substitution z = y
x

yields (with c = 1
2
ω and ω = 2π)

x2 + xy + y2 = − 1

πC3

=
1

C4

= C5 . (A.0.8)

The general solution (A.0.8) to (A.0.3) is a quadratic curve. The geometric

form of this curve (ellipse, parabola, hyperbola) can be determined by writ-

ing (A.0.8) in matrix form and rotating the principal axes around its origin

to transform (A.0.8) into a simple sum of squares

x2 + xy + y2 = (x y)

(
1 1

2
1
2

1

)(
x

y

)
︸ ︷︷ ︸

~xT A ~x

= C5 . (A.0.9)
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The transformation of the principal axes is done with a rotary matrix B

whose columns consist of the unit eigenvectors ~x1, ~x2 of A, so that(
y2 y1

x2 x1

)(
1 1

2
1
2

1

)(
x1 x2

y1 y2

)
=

(
λ1 0

0 λ2

)
︸ ︷︷ ︸

BT AB=D

(A.0.10)

where D is a diagonal matrix with the eigenvalues λ1, λ2 of A. Any vector

~x can then be represented by a vector ~x ′ out of the transformed coordinate

system in the following way

~x = B~x ′ . (A.0.11)

The eigenvalues of A are calculated from the characteristic polynomial

det(A− λI) = 0 ⇔ det

(
1− λ 1

2
1
2

1− λ

)
= 0

to λ1 = 1
2
, λ2 = 3

2
with the corresponding unit eigenvectors being determined

by

A~x1 = λ1~x1

A~x2 = λ2~x2

to be

~x1 =
1√
2

(
1

−1

)

~x2 =
1√
2

(
1

1

)
.

Thus the rotary matrix B is

B =
1√
2

(
1 1

−1 1

)
. (A.0.12)

With the transformation of the principal axes according to (A.0.11), equation

(A.0.8) can be written as

x2 + xy + y2 =
1

2
(x′ y′)

(
1 −1

1 1

)(
1 1

2
1
2

1

)(
1 1

−1 1

)(
x′

y′

)
︸ ︷︷ ︸

~x ′T BT AB~x ′

=
1

2
x′ 2 +

3

2
y′ 2 = C5

= x′ 2 + 3y′ 2 = C6 (A.0.13)
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yielding the equation of an ellipse centred at the origin of the transformed

x ′, y ′-coordinate system. The constant of integration C6 is defined by the

initial condition y (x0) = y0 to be C6 = x ′2
0 + 3y ′2

0 , so that (A.0.13) is fully

determined

x′ 2

x′20 + 3y′20
+

y′ 2

1
3
x′20 + y′20

= 1 . (A.0.14)

The principle axes of the ellipse (A.0.14) are a =
√

x′20 + 3y′20 and b =√
1
3
x′20 + y′20 . According to this, the circumference of the ellipse depends on

the starting point (x ′
0, y

′
0) of a tracer.

The transformation by the rotary matrix B yields a rotation of the ellipse

(A.0.14) around the origin of the x ′, y ′ coordinate system with an angle φ.

This angle can be derived from the transformation of the x ′, y ′-coordinates

after (A.0.11)

x =
1√
2

(x ′ + y ′) ⇔ x ′ =
1√
2

(x− y)

y =
1√
2

(−x ′ + y ′) ⇔ y ′ =
1√
2

(x + y) .

The position of the x ′y ′-axes in relation to the axes of the x, y-space can be

deduced from y ′ = 0 ⇔ x = −y and x ′ = 0 ⇔ x = y. Hence, the x ′- and

y ′-axis mark the second and the first bisecting line of the x, y-coordinate

system. This equals a clockwise rotation of the x, y-axes with the angle

φ = 45◦ to map them to these axes of the x ′, y ′ space. Therefore (A.0.8)

describes

x2 + x y + y2 = C5 =
1

2
C6 =

1

2
x ′2

0 +
3

2
y ′2

0 = x2
0 + x0 y0 + y2

0 (A.0.15)

an ellipse which is rotated clockwise with φ = 45◦ (Fig. A.0.2).

Fig. A.0.2: Illustration of the coordinate systems with the corresponding ellipses.
Transformation between the coordinate systems is done with the rotary matrix B

and BT , respectively.
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Appendix B

Appendix to Section 2.4.1.2

In the following it is shown how to derive Eq. (2.4.12) in a different way

than presented in section 2.4.1.2. Initially the length ∆x(t) of the path of

a particle in x-direction during the time interval ∆t can be expressed as a

Taylor series about the starting position x(t0)

∆x(t) = x(t0 + ∆t)− x(t0) =
dx

dt

∣∣∣∣
t=t0

∆t +
1

2

d2x

dt2

∣∣∣∣
t=t0

(∆t)2 (B.0.1)

+
1

3!

d3x

dt3

∣∣∣∣
t=t0

(∆t)3 + · · ·

Recognising that the velocity of the tracer at any position x is

dx

dt
=

x− xl

xr − xl

ur +

[
1− x− xl

xr − xl

]
ul = x

∆u

∆x
− xl

∆u

∆x
+ ul = u. (B.0.2)

one can replace all terms on the right-hand side of Eq. (B.0.1). The first

term of the Taylor series is simply

dx

dt

∣∣∣∣
t=t0

= x
∆u

∆x
− xl

∆u

∆x
+ ul = u0 (B.0.3)

and the following terms can be written as

d2x

dt2

∣∣∣∣
t=t0

=
d

dt

(
x

∆u

∆x
− xl

∆u

∆x
+ ul

) ∣∣∣∣
t=t0

=
∆u

∆x

dx

dt

∣∣∣∣
t=t0

= u0
∆u

∆x
(B.0.4)
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d3x

dt3

∣∣∣∣
t=t0

=
d2

dt2

(
x

∆u

∆x
− xl

∆u

∆x
+ ul

) ∣∣∣∣
t=t0

=
∆u

∆x

d

dt

(
dx

dt

) ∣∣∣∣
t=t0

=
∆u

∆x

d

dt

(
x

∆u

∆x
− xl

∆u

∆x
+ ul

) ∣∣∣∣
t=t0

= u0
∆2u

∆2x

(B.0.5)

...

such that Eq. (B.0.1) becomes

∆x(t) = u0∆t + u0
∆u

∆x
(∆t)2 + u0

(
∆u

∆x

)2

(∆t)3 + . . . (B.0.6)

In a next step Eq. (B.0.6) is rewritten to further simplify it

∆x(t) = u0
∆x

∆u

∆u ∆t

∆x︸ ︷︷ ︸
=y

+
1

2

(∆u ∆t)2

∆x2︸ ︷︷ ︸
=y2

+
1

3!

(∆u ∆t)3

∆x3︸ ︷︷ ︸
=y3

+ · · ·

 . (B.0.7)

The quantities in brackets are the first, second and third order terms of the

Taylor expression of

ey − 1 =
n∑

i=1

1

n!
yn (B.0.8)

and the distance a tracer travels during a time step ∆t is

∆x(t) = u0
∆x

∆u

(
e

∆u
∆x

∆t − 1
)

. (B.0.9)

The solution for the spatial step in x- and y-direction is in analogy to Eq.

(B.0.9) and reads

∆y(t) = v0
∆y

∆v

(
e

∆v
∆y

∆t − 1
)

(B.0.10)

∆z(t) = w0
∆z

∆w

(
e

∆w
∆z

∆t − 1
)

(B.0.11)

.
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