
Introduction to scientific programming with Python

3. The libraries NumPy and SciPy

Markus Reinert1

Leibniz Institute of Baltic Sea Research Warnemünde (IOW)

30 April 2021

1 B markus.reinert@io-warnemuende.de
Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 1 / 7

markus.reinert@io-warnemuende.de


Overview of today’s course

Python course 3
Installation of NumPy and SciPy
Overview of NumPy and SciPy
Comparison of lists and arrays
Creation of arrays
Usage of arrays (see the course notebook)

Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 2 / 7



Installation of NumPy and SciPy

I If you are on conda: already installed.
I Otherwise, run in a terminal:

$ python -m pip install numpy scipy
(You might need to write python3 instead of python.)

I More information: https://scipy.org/install.html

Write at the beginning of every script where you use NumPy:
import numpy as np
and if you use anything from SciPy:
from scipy import stats, optimize, special, ...
(import only what you need)

Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 3 / 7

https://scipy.org/install.html


Overview of NumPy and SciPy
NumPy

https://numpy.org/doc/stable/reference/

I common mathematical functions:
np.sqrt(x), np.sin(x), np.cos(x),
np.exp(x), ...

I basic statistics:
np.mean(a), np.std(a)

I random numbers with simple
distributions: np.random.randint(n)
(random integer from {0, 1, . . . , n-1})

I basic linear algebra
I solving linear or polynomial
equations

I arrays (: next slide)

Scipy
https://docs.scipy.org/doc/scipy/reference/

I less common functions:
special.gamma(x), Bessel functions,
. . .

I advanced statistics:
stats.skew(x), stats.norm.pdf(x)

I random numbers from complicated
distributions:
stats.poisson.rvs(mu)

I advanced linear algebra
I solving “any” equation
(for example with optimize.newton)

Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 4 / 7

https://numpy.org/doc/stable/reference/
https://docs.scipy.org/doc/scipy/reference/


Comparison of lists and arrays

Lists
I one-dimensional
(but can contain other lists)

I can be extended
I can contain any data
I data access with indices

.

I list-operations (count, index, . . . )

Arrays
I zero-, one-, two-, . . . , n-dimensional

.

I have a fixed length / shape
I can contain only one data type
I data access with indices
or conditions

I mathematical operations
(efficiently)

Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 5 / 7



Typical ways of creating arrays

1. from a list (or similar): np.array(l)
2a. filled with 0s or 1s: np.zeros(shape), np.ones(shape)

2b. filled with 0s or 1s, but with shape and data type of another array:
np.zeros_like(a), np.ones_like(a)

3a. numerical 1D-ranges:
np.arange(start, stop, step), np.linspace(start, stop, num)

3b. to go from 1D-ranges to 2D: X, Y = np.meshgrid(x, y)

4. from a text file: np.loadtxt(file_name)

Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 6 / 7



Usage of arrays (see the course notebook)

I determine size, shape, and number of dimensions
I selection of single and multiple entries, rows, columns
I mathematics
I broadcasting
I selection by conditions

Markus Reinert Introduction to Python 3rd Python course, 30 April 2021 7 / 7


	Python course 3
	Introduction to scientific programming with Python
	Overview of today's course
	Installation of NumPy and SciPy
	Overview of NumPy and SciPy
	Comparison of lists and arrays
	Creation of arrays
	Usage of arrays (see the course notebook)


