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Overview of today’s course

Python course 3
Installation of NumPy and SciPy
Overview of NumPy and SciPy
Comparison of lists and arrays
Creation of arrays
Usage of arrays (see the course notebook)
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Installation of NumPy and SciPy

I If you are on conda: already installed.
I Otherwise, run in a terminal:

$ python -m pip install numpy scipy
(You might need to write python3 instead of python.)

I More information: https://scipy.org/install.html

Write at the beginning of every script where you use NumPy:
import numpy as np
and if you use anything from SciPy:
from scipy import stats, optimize, special, ...
(import only what you need)
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Overview of NumPy and SciPy
NumPy

https://numpy.org/doc/stable/reference/

I common mathematical functions:
np.sqrt(x), np.sin(x), np.cos(x),
np.exp(x), ...

I basic statistics:
np.mean(a), np.std(a)

I random numbers with simple
distributions: np.random.randint(n)
(random integer from {0, 1, . . . , n-1})

I basic linear algebra
I solving linear or polynomial
equations

I arrays (: next slide)

Scipy
https://docs.scipy.org/doc/scipy/reference/

I less common functions:
special.gamma(x), Bessel functions,
. . .

I advanced statistics:
stats.skew(x), stats.norm.pdf(x)

I random numbers from complicated
distributions:
stats.poisson.rvs(mu)

I advanced linear algebra
I solving “any” equation
(for example with optimize.newton)
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Comparison of lists and arrays

Lists
I one-dimensional
(but can contain other lists)

I can be extended
I can contain any data
I data access with indices

.

I list-operations (count, index, . . . )

Arrays
I zero-, one-, two-, . . . , n-dimensional

.

I have a fixed length / shape
I can contain only one data type
I data access with indices
or conditions

I mathematical operations
(efficiently)
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Typical ways of creating arrays

1. from a list (or similar): np.array(l)
2a. filled with 0s or 1s: np.zeros(shape), np.ones(shape)

2b. filled with 0s or 1s, but with shape and data type of another array:
np.zeros_like(a), np.ones_like(a)

3a. numerical 1D-ranges:
np.arange(start, stop, step), np.linspace(start, stop, num)

3b. to go from 1D-ranges to 2D: X, Y = np.meshgrid(x, y)

4. from a text file: np.loadtxt(file_name)
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Usage of arrays (see the course notebook)

I determine size, shape, and number of dimensions
I selection of single and multiple entries, rows, columns
I mathematics
I broadcasting
I selection by conditions
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